Nano scientists to develop next-generation LEDs

March 19, 2007

Nanotechnology may unlock the secret for creating highly efficient next-generation LED lighting systems, and exploring its potential is the aim of several projects centered at Oak Ridge National Laboratory.

Seen everywhere today from traffic signals, taillights and cell phone displays to stadium JumboTrons, light emitting diodes fluoresce as electrical current passes through them. The most developed LED technology is based on crystals, typically made from indium gallium nitride. However, researchers at ORNL's Center for Nanophase Materials Sciences and the University of Tennessee are working to develop technology that will improve a new generation of LED devices composed of thin films of polymers or organic molecules.

These organic LEDs are designed to be formed into thin, flexible sheets that hold promise for a new generation of lighting fixtures and flexible electronics displays. Currently applications of organic LEDs, or OLEDs, are limited to small-screen devices such as cell phones, personal digital assistants and digital cameras; however it is hoped that someday large displays and lighting fixtures can be produced using low-cost manufacturing processes.

At ORNL, researchers are developing electrodes composed of carbon nanotubes and magnetic nanowires to enhance the light emission from polymer-based OLEDs. In early tests, carbon nanotubes improved the electroluminescence efficiency of polymer OLEDs by a factor of four and reduced the energy required to operate them. Magnetic nanowires and dots have been shown to help control the spin of electrons injected into the OLEDs to further improve the efficiency and reliability of the devices. A third aspect of the research focuses on creation and chemical processing of the nanotubes themselves. Researchers at ORNL use a technique called laser vaporization produces purer nanotubes with fewer defects than other fabrication techniques.

With assistance of a $600,000 grant from the Department of Energy's Office of Energy Efficiency and Renewable Energy, the ORNL/UT team hopes to merge the science and new materials research into a new technology for practical OLED devices that consumes less than half the power of today's technology and opens the door for their practical use in household lighting.

"The real, long-term solution to making a more efficient device may be found in nanoscience," said David Geohegan, an ORNL researcher who is leading the OLED effort. "Over the next year we hope to learn why nanomaterials enhance these devices. I think someday we will see OLEDs everywhere, from more durable touch-screen displays to electronic newspapers that we can roll up and carry easily to even larger wall displays for home entertainment or lighting."

Source: Oak Ridge National Laboratory

Explore further: LG to put OLED first as Chinese LCD makers narrow gap

Related Stories

LG to put OLED first as Chinese LCD makers narrow gap

August 17, 2015

South Korea's LG Display said Monday that it will change its investment priority to advanced displays called OLEDs as Chinese manufacturers quickly catch up with their South Korean rivals in the LCD market.

LG Display plans heavy investment in OLED plant

July 23, 2015

Apple's iPhone displays are linked to the South Korean company LG Display in a news report. The Telegraph said that LG Display has invested heavily in a flexible-screen production line.

Graphene quantum dot LEDs

June 15, 2015

The first graphene quantum dot light-emitting diodes (GQD-LEDs), fabricated by using high-quantum-yield graphene quantum dots through graphite intercalation compounds, exhibit luminance in excess of 1,000 cd/m2.

New boron compounds for organic light-emitting diodes

June 10, 2015

Major advances in the field of organic electronics are currently revolutionising previously silicon-dominated semiconductor technology. Customised organic molecules enable the production of lightweight, mechanically flexible ...

Video of SmartEyeglass Attach! from Sony is released

February 14, 2015

Sony continues to seed interest in its smart eyewear concept. Sony recently released a video showing the SmartEyeglass Attach! in action, sent to YouTube via the Sony's Xperia Development team. The video is a follow-up to ...

Recommended for you

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.