'Micro-rack' measures cell mechanical properties

Mar 02, 2007
'Micro-Rack' Measures Cell Mechanical Properties
Electron micrograph of the NIST "cell puller," which measures the mechanical properties of a living cell. After the cell spreads and adheres to the center of the 200-micrometer-wide circular platform, half of the platform is pulled slowly away, while a sensor connected to the other half measures the force on the cell. Credit: D. Serrell/NIST

Researchers at the National Institute of Standards and Technology have developed a microelectromechanical system (MEMS) cell-stretcher that can measure the mechanical properties of a living cell, such as its ability to stick to a surface. The new device is expected to enable novel studies of cell mechanics, which influence basic cell functions such as growth and division, and diseases such as sickle cell anemia and asthma.

The prototype device, described in a new paper, is believed to be the only technique for studying bulk mechanical properties of a single, whole cell while it is spreading out and sticking to a substrate as it would in the body, says the designer, NIST bioengineer David Serrell. Other biomechanical test methods focus on individual cell components or entire tissues.

The heart of the NIST device is a circular cell platform 200 micrometers wide, a tiny fleck just barely visible to the naked eye. The two halves of the circle can be pulled as far as 100 micrometers apart under computer control, while the force needed to separate them is measured by sensors. In a demonstration using a connective tissue cell, the cell is placed on the center of the platform, allowed to spread and adhere for several hours, and then pulled slowly apart until it detaches. In NIST experiments, the cells let go of the substrate at a force of about 1500 nanonewtons.

The devices are made on silicon wafers using a NIST-developed process based on standard chip-making techniques. The geometry of any component can be altered to suit a variety of cell types and experiments. The apparatus could be used for a variety of studies, such as effects of cyclic strain on cells, the elasticity of their response to force, or the effectiveness of different proteins used to encourage attachment of the cells, Serrell says. The newest version of the device, fabricated but not yet tested, is made of silicon nitride, a transparent material that will allow simultaneous real-time imaging of the interior of the cells and perhaps provide new insights into the relationships of force and cell mechanical properties and structure.

Citation: D.B. Serrell, T. Oreskovic, A.J. Slifka, R.L. Mahajan and D.S. Finch. A uniaxial bioMEMS device for quantitative force-displacement measurements. Biomedical Microdevices. Available online.

Source: National Institute of Standards and Technology

Explore further: Mozambique destroys over two tonnes of ivory, rhino horns

Related Stories

Getting the measure of matter

Jun 16, 2015

Peter Rohde and his collaborators develop big ideas – and a measure of corny humour – using photons, the smallest possible units of light. (Did you hear about the photon that walked into a hotel and the ...

Chombo-Crunch sinks its teeth into fluid dynamics

Jun 03, 2015

For more than a decade, mathematicians and computational scientists have been collaborating with earth scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) to break new ground in the modeling ...

Four easy tips to make your batteries last longer

Jun 03, 2015

Here are a few things you can do to make your lithium-ion (Li-ion) batteries last longer, whether they be used in an electric car, a large home installation – such as Tesla's newly announced Powerwall – ...

Recommended for you

Study shows grey squirrels are quick learners

1 hour ago

They may be viewed by some as an invasive species or a commonplace pest of public parks, but a new study from the University of Exeter has shown that grey squirrels are actually quick learners capable of ...

Waiting to harvest after a rain enhances food safety

2 hours ago

To protect consumers from foodborne illness, produce farmers should wait 24 hours after a rain or irrigating their fields to harvest crops, according to new research published in the journal Applied and Environmental Microbiology.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.