'Micro-rack' measures cell mechanical properties

March 2, 2007
'Micro-Rack' Measures Cell Mechanical Properties
Electron micrograph of the NIST "cell puller," which measures the mechanical properties of a living cell. After the cell spreads and adheres to the center of the 200-micrometer-wide circular platform, half of the platform is pulled slowly away, while a sensor connected to the other half measures the force on the cell. Credit: D. Serrell/NIST

Researchers at the National Institute of Standards and Technology have developed a microelectromechanical system (MEMS) cell-stretcher that can measure the mechanical properties of a living cell, such as its ability to stick to a surface. The new device is expected to enable novel studies of cell mechanics, which influence basic cell functions such as growth and division, and diseases such as sickle cell anemia and asthma.

The prototype device, described in a new paper, is believed to be the only technique for studying bulk mechanical properties of a single, whole cell while it is spreading out and sticking to a substrate as it would in the body, says the designer, NIST bioengineer David Serrell. Other biomechanical test methods focus on individual cell components or entire tissues.

The heart of the NIST device is a circular cell platform 200 micrometers wide, a tiny fleck just barely visible to the naked eye. The two halves of the circle can be pulled as far as 100 micrometers apart under computer control, while the force needed to separate them is measured by sensors. In a demonstration using a connective tissue cell, the cell is placed on the center of the platform, allowed to spread and adhere for several hours, and then pulled slowly apart until it detaches. In NIST experiments, the cells let go of the substrate at a force of about 1500 nanonewtons.

The devices are made on silicon wafers using a NIST-developed process based on standard chip-making techniques. The geometry of any component can be altered to suit a variety of cell types and experiments. The apparatus could be used for a variety of studies, such as effects of cyclic strain on cells, the elasticity of their response to force, or the effectiveness of different proteins used to encourage attachment of the cells, Serrell says. The newest version of the device, fabricated but not yet tested, is made of silicon nitride, a transparent material that will allow simultaneous real-time imaging of the interior of the cells and perhaps provide new insights into the relationships of force and cell mechanical properties and structure.

Citation: D.B. Serrell, T. Oreskovic, A.J. Slifka, R.L. Mahajan and D.S. Finch. A uniaxial bioMEMS device for quantitative force-displacement measurements. Biomedical Microdevices. Available online.

Source: National Institute of Standards and Technology

Explore further: Ten things to know about thunderstorms that strike at night

Related Stories

The incredible shrinking ESR machine

July 15, 2015

Researchers at the National Institute of Standards and Technology (NIST) have come up with a way to shrink a research instrument generally associated with large machines that make bulk measurements of samples down to a literally ...

Focused energy of lasers breaks microscopic adhesion

July 2, 2015

Small objects tend to cling to everything. It's why parents dread hosting parties that involve confetti. It's why glitter is fun for crafts—until it finds its way onto everything else you touch.

Researcher uses microscale technology to isolate rare cells

June 17, 2015

In a blood sample taken from a cancer patient, there may be a single circulating tumor cell among hundreds of thousands of other cells. These tumor cells can provide valuable information about how cancer progresses, and could ...

Recommended for you

'Bathtub rings' suggest Titan's dynamic seas

July 28, 2015

Saturn's moon, Titan, is the only object in the Solar System other than Earth known to have liquid on its surface. While most of the lakes are found around the poles, the dry regions near the equator contain signs of evaporated ...

Head and body lice read DNA differently

July 28, 2015

What makes head lice different from body lice had scientists scratching their heads as previous genetic studies failed to find any substantial differences between the two types of lice.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.