Gamma-Ray Burst Challenges Theory

March 8, 2007 By Bob Naeye
Gamma-Ray Burst Challenges Theory
The core of a massive star in a distant galaxy collapses, ending its life -- though there is little effect visible at the surface. Deep inside, twin beams of matter and energy begin to blast their way outward. Within seconds, the beams have eaten their way out of the star, and observers at Earth see it as a gamma-ray burst, GRB 060729A. Credit: Phil Plait SSU NASA E/PO; Aurore Simonnet SSU NASA E/PO

In a series of landmark observations gathered over a period of four months, NASA's Swift satellite has challenged some of astronomers' fundamental ideas about gamma-ray bursts (GRBs), which are among the most extreme events in our universe. GRBs are the explosive deaths of very massive stars, some of which eject jets that can release in a matter of seconds the same amount of energy that the sun will radiate over its 10-billion-year lifetime.

When GRB jets slam into nearby interstellar gas, the resulting collision generates an intense afterglow that can radiate brightly in X-rays and other wavelengths for several weeks. Swift, however, has monitored a GRB whose afterglow remained visible for more than 125 days in the satellite's X-ray Telescope (XRT).

Gamma-Ray Burst Challenges Theory
The outer envelope of the star explodes outward, causing a supernova. Deep at the heart of this event, the core has shrunk into a fantastically dense magnetar, a neutron star possessing a magnetic field trillions or even quadrillions of times stronger than Earth's. The magnetism is what powers the long glow of X-rays seen by Earthbound scientists. Credit: Phil Plait SSU NASA E/PO; Aurore Simonnet SSU NASA E/PO

Swift's Burst Alert Telescope (BAT) detected the GRB in the constellation Pictor on July 29, 2006. The XRT picked up GRB 060729 (named for its date of detection) 124 seconds after BAT's detection. Normally, the XRT monitors an afterglow for a week or two until it fades to near invisibility. But for the July 29 burst, the afterglow started off so bright and faded so slowly that the XRT could regularly monitor it for months, and the instrument was still able to detect it in late November. The burst's distance from Earth (it was much closer than many GRBs) was also a factor in XRT's ability to monitor the afterglow for such an extended period.

The slow fading of the X-ray afterglow has several important ramifications for our understanding of GRBs. "It requires a larger energy injection than what we normally see in bursts, and may require continuous energy input from the central engine," says astronomer Dirk Grupe of Penn State University, University Park, Penn., and lead author of an international team that reports these results in an upcoming issue of the Astrophysical Journal.

One possibility is that the GRB's central engine was a magnetar — a neutron star with an ultra-powerful magnetic field. The magnetar's magnetic field acts like a brake, forcing the star's rotation rate to spin-down rapidly. The energy of this spin-down can be converted into magnetic energy that is continuously injected into the initial blast wave that triggered the GRB. Calculations by paper coauthor Xiang-Yu Wang of Penn State show that this energy could power the observed X-ray afterglow and keep it shining for months.

A burst observed on January 10, 2007, also suggests that magnetars power some GRBs. GRB 070110's X-ray afterglow remained nearly constant in brightness for 5 hours, then faded rapidly more than tenfold. In another paper submitted to the Astrophysical Journal, an international group led by Eleonora Troja of the INAF—IASF of Palermo, Italy, proposes that a magnetar best explains these observations.

"People have thought for a long time that GRBs are black holes being born, but scientists are now thinking of other possibilities," says Swift principal investigator Neil Gehrels of NASA's Goddard Space Flight Center in Greenbelt, Md., a co-author on both studies.

Another surprising result from GRB 060729 is that the X-ray afterglow displayed no sharp decrease in brightness over the 125-day period that it was detected by the XRT. Using widely accepted theory, Grupe and his colleagues conclude that the angle of the GRB's jet must have been at least 28 degrees wide. In contrast, most GRB jets are thought to have very narrow opening angles of only about 5 degrees. "The much wider opening angle seen in GRB 060729 suggests a much larger energy release than we typically see in GRBs," says Grupe.

Source: Goddard Space Flight Center

Explore further: Study of gamma-ray bursts afterglow surprises scientists

Related Stories

Study of gamma-ray bursts afterglow surprises scientists

April 30, 2014

Research from an international team of scientists led by the University of Leicester has discovered for the first time that one of the most powerful events in our universe – Gamma-Ray Bursts (GRB) – behave differently ...

Swift spacecraft spots its thousandth gamma-ray burst

November 6, 2015

NASA's Swift spacecraft has detected its 1,000th gamma-ray burst (GRB). GRBs are the most powerful explosions in the universe, typically associated with the collapse of a massive star and the birth of a black hole.

Recommended for you

Dark matter may be smoother than expected

December 7, 2016

Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought. An international team ...

Saturn's bulging core implies moons younger than thought

December 7, 2016

Freshly harvested data from NASA's Cassini mission reveals that Saturn's bulging core and twisting gravitational forces offer clues to the ages of the planet's moons. Astronomers now believe that the ringed planet's moons ...

Giant radio flare of Cygnus X-3 detected by astronomers

December 7, 2016

(Phys.org)—Russian astronomers have recently observed a giant radio flare from a strong X-ray binary source known as Cygnus X-3 (Cyg X-3 for short). The flare occurred after more than five years of quiescence of this source. ...

Cassini transmits first images from new orbit

December 7, 2016

NASA's Cassini spacecraft has sent to Earth its first views of Saturn's atmosphere since beginning the latest phase of its mission. The new images show scenes from high above Saturn's northern hemisphere, including the planet's ...

New evidence for a warmer and wetter early Mars

December 7, 2016

A recent study from ESA's Mars Express and NASA's Mars Reconnaissance Orbiter (MRO) provides new evidence for a warm young Mars that hosted water across a geologically long timescale, rather than in short episodic bursts ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.