Gallium: A new antibacterial agent?

March 16, 2007

New antibacterial strategies are needed because more and more bacteria are antibiotic resistant and because antibiotics are not effective at eradicating chronic bacterial infections. One approach to developing new antibacterial strategies, taken by researchers from the University of Washington, Seattle, is to limit the amount of iron (Fe), which is critical for bacterial growth, to which bacteria have access.

In the study, which appears online on March 15 in advance of publication in the April print issue of the Journal of Clinical Investigation, Pradeep Singh and colleagues show that Gallium (Ga), which is chemically similar to Fe and can disrupt biological systems by substituting for Fe, inhibits the in vitro growth of Pseudomonas aeruginonsa; even multidrug resistant strains of P. aeruginonsa isolated from individuals with cystic fibrosis. Ga also prevented P. aeruginonsa forming biofilms, the multi-cellular bacterial communities responsible for chronic bacterial infections, and killed both free-living bacteria and bacteria in biofilms.

Furthermore, inhalation of Ga protected mice from both acute and chronic P. aeruginonsa lung infections. As Ga is already FDA approved for the treatment of hypercalcemia of malignancy, these data suggest that Ga might be a promising new therapeutic for the treatment of infection with P. aeruginonsa, a major cause of infection in individuals with cystic fibrosis and of infection acquired in hospital.

Source: Journal of Clinical Investigation

Related Stories

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.