Fruit Flies, Death, and Immunity

March 28, 2007

University of Arkansas scientists have found an important mechanism that regulates the destruction of larval fruit fly salivary glands that could point the way to understanding programmed cell death in the human immune system.

Biology professor Michael Lehmann, graduate student Chike Cao and research assistant Yanling Liu recently published their findings in the Journal of Cell Biology.

Lehmann and his colleagues examined the expression of different proteins during the development and demise of larval salivary glands in Drosophila melanogaster, a common fruit fly. Previous studies have shown that steroids and other hormones trigger programmed cell death during normal development, such as the destruction of the tadpole tail during frog metamorphosis. However, little was known about what tells these hormones to act on a specific tissue at a given time.

"We wanted to know why one cell dies during steroid hormone release, while another one doesn't," Lehmann said.

Cell death, it turns out, is essential to life - without it, normal development can't take place, and this sometimes results in premature death. Lehmann points out that cancer cells have a defect in their cell death program, which is why they grow unchecked. Thus, understanding the mechanisms that control cell death can give scientists insights into how such deaths preserve life.

While investigating the Drosophila model, the researchers found that the life and death of the salivary gland cells depend upon a member of the Fork head protein family. This protein first protects the salivary glands from steroid-triggered death by acting as a "traffic cop," preventing the activation of two key genes responsible for cell death. However, the protein then disappears after a particular steroid pulse in a sequence of pulses. A subsequent steroid pulse triggers the death of the salivary gland cells.

To determine the extent of involvement of this protein, the researchers removed this protein at an earlier stage in development, which led to the activation of the cell-killing genes by an earlier steroid pulse and to premature cell death. Further, when the scientists caused the continued presence of the Fork head protein, the cell death genes remained inactive and the cells continued to live past their normal life span.

These findings have implications beyond fruit flies, as the molecular machinery that controls cell death is largely similar for invertebrates and vertebrates. The Fork head protein in Drosophila has homologs in humans, called FOXAs. These FOXAs are known to work together with corticosteroids, which control cell death in the immune system and are in therapeutic use to suppress allergic and inflammatory responses.

"Our research suggests that the FOXAs might have a similar role in cell death control in the immune system," Lehmann said. "This gives medical researchers a direction in which they might want to look."

Source: University of Arkansas

Explore further: Out of the lamplight

Related Stories

Out of the lamplight

July 31, 2015

The human body is governed by complex biochemical circuits. Chemical inputs spur chain reactions that generate new outputs. Understanding how these circuits work—how their components interact to enable life—is critical ...

Making sense of our evolution

July 13, 2015

The science about our our special senses - vision, smell, hearing and taste - offers fascinating and unique perspectives on our evolution.

Production of iPS cells: Discovery of the fifth element

July 8, 2015

Since 2006, research has succeeded in generating, from specialised adult cells, induced pluripotent cells (iPS cells), with huge potential applications, particularly for regenerative medicine. However, the process has still ...

A triangular protein pump

July 6, 2015

Ludwig Maximilian University of Munich researchers have elucidated the structure of a molecular machine with an atypical triangular shape that is involved in peroxisome biogenesis, and characterized its conformation in different ...

How cancer cells avoid shutdown

July 6, 2015

A mechanism beyond the level of gene regulation, which is often the underlying reason for changes in protein levels, does enable the strong accumulation of a tumour promoting protease in stressed cancer cells. The group of ...

Researchers discover new mechanism of DNA repair

July 3, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

Recommended for you

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

Shedding light on millipede evolution

August 2, 2015

As an National Science Foundation (NSF)-funded entomologist, Virginia Tech's Paul Marek has to spend much of his time in the field, hunting for rare and scientifically significant species. He's provided NSF with an inside ...

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.