Faulted modeling

March 23, 2007

Factoring in crustal strength changes along the San Andreas Fault would improve the predictive models that researchers use to understand the likelihood and intensity of earthquakes there. That's the conclusion from a study published in the April issue of Geology titled, "Diffuse interseismic deformation across the Pacific-North America plate boundary."

Currently, it is standard practice for universities and government agencies to measure crustal movement that occurs within Southern California using precise Global Positioning System (GPS) and other highly accurate tools that project movements in millimeters per year. In this study, Dr. Shimon Wdowinski, research associate professor at the University of Miami Rosenstiel School of Marine & Atmospheric Science, and scientists from Scripps Institution of Oceanography used 840 very precise measurements of crustal movements collected in the past 25 years.

These measurements were conducted mainly in southern California, to study the nature of steady crustal movements occurring in between large earthquakes within this same zone. By using a geometrical technique, they found a disparity between the observations and a mechanical model in a narrow band along the San Andreas Fault and in the Mojave Block.

"This suggests that crustal changes and fault segments that haven't yet been included in models really should be considered in future ones," Wdowinski said. "By adding in this information to the models, scientists will improve their assessments of potential earthquake hazards."

The steady motion between the Pacific and North American tectonic plates deforms a wide region in the western United States, extending over California, Arizona, Nevada, and Utah. The San Andreas Fault absorbs most of the deformation. The deformation increases the stress level within the Earth's crust, mainly along fault segments. Once the stresses reach high enough values, which cannot be supported by the crust, that is when faulting occurs and the excess stress is released by an earthquake.

Source: University of Miami Rosenstiel School of Marine & Atmospheric Science

Explore further: Study proposes common mechanism for shallow and deep earthquakes

Related Stories

California faults moved quietly after Baja quake

May 1, 2014

(Phys.org) —A new NASA study finds that a major 2010 earthquake in northern Mexico triggered quiet, non-shaking motions on several Southern California faults that released as much energy as a magnitude 4.9 to 5.3 earthquake.

New explanation for slow earthquakes on San Andreas

June 3, 2013

(Phys.org) —New Zealand's geologic hazards agency reported this week an ongoing, "silent" earthquake that began in January is still going strong. Though it is releasing the energy equivalent of a 7.0 earthquake, New Zealanders ...

Shedding light on the earthquake situation

February 20, 2013

Researchers from the Swiss Seismological Service have worked together with the Seismology and Geodynamics group at ETH Zurich and with local support in Bhutan to install a temporary seismological network. They plan to use ...

Recommended for you

Climate ups odds of 'grey swan' superstorms

August 31, 2015

Climate change will boost the odds up to 14-fold for extremely rare, hard-to-predict tropical cyclones for parts of Australia, the United States and Dubai by 2100, researchers said Monday.

Quantifying the impact of volcanic eruptions on climate

August 31, 2015

Large volcanic eruptions inject considerable amounts of sulphur in the stratosphere which, once converted into aerosols, block sun rays and tend to cool the surface of the Earth down for several years. An international team ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.