Company Develops a New Approach to Nerve Repair

March 12, 2007

A new company, Neurotex Ltd, has been established to develop novel silk-based materials that have the potential to provide a new generation of nerve repair materials and treatments.

Neurotex Ltd is a joint venture company, bringing together the expertise of Professor John Priestley, Head of Neuroscience at Queen Mary’s School of Medicine and Dentistry, and the unique silk-based materials technology developed by Dr David Knight, and Dr Nick Skaer of Oxford Biomaterials Ltd. Dr Richard Skipper has been appointed Chief Executive Officer of the new company.

Neurotex Ltd is developing a range of patented devices for the repair of damaged nerves using a modified wild silk developed by Oxford Biomaterials, called Spidrex®.

Spidrex has biological and mechanical properties that make it a highly attractive candidate for nerve repair devices. Initial studies have shown Spidrex to be highly supportive of directed nerve growth with low immunotoxicity. Professor John Priestley, Scientific Founder of Neurotex expects that the research will lead to treatment for peripheral nerve injury, and may eventually lead to treatments for repairing damaged spinal cords – however, he cautions that spinal cord damage is far more complex and a much longer term goal.

Professor John Prestley, Scientific Founder of Neurotex said; “For us it’s an ambitious but realistic goal to repair the peripheral nervous system. If you damage a peripheral nerve, so long as it has a support to follow, the nerve should regrow and hopefully the nerve injury will repair itself. If you damage the spinal cord, however, there are lots of things that will try and prevent the regrowth taking place, such as natural inhibitory components. To repair a damaged spinal cord, we will need different types of tubes and will have to combine other approaches such as stem cells, growth factors or other additives. So it’s a much longer term goal, but the rewards are potentially much greater.” The Kinetique Biomedical Seed Fund has invested £250,000 to develop devices for use in peripheral nerve injury repair.

Source: Queen Mary, University of London

Explore further: Peripheral nerve repair with fat precursor cells led to wider nerves and less muscle atrophy

Related Stories

Spun-sugar fibers spawn sweet technique for nerve repair

February 26, 2009

Researchers at Purdue University have developed a technique using spun-sugar filaments to create a scaffold of tiny synthetic tubes that might serve as conduits to regenerate nerves severed in accidents or blood vessels damaged ...

Origin of cells associated with nerve repair discovered

November 15, 2010

Scientists have discovered the origin of a unique type of cell known for its ability to support regeneration in the central nervous system. Their findings, published this week in the journal Proceedings of the National Academy ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.