New brake light system could mean fewer collisions

March 23, 2007

A dynamic brake light system that enables rear lights on a leading vehicle to contract or expand during hard braking could help lessen how often rear-end automobile collisions occur, says new research from the University of Toronto.

University of Toronto mechanical engineers Zhonghai Li and Paul Milgram worked with the fact that drivers perceive the time separation between themselves and a vehicle they are following based on the size of image of the leading vehicle on the driver’s retina. They hypothesized that if it were possible to exaggerate how quickly the retinal image expanded, drivers might brake sooner in potential crash situations. A preliminary study using a driving simulator confirmed that they did. The next challenge was to find an application for this knowledge.

“In the real world, we can’t manipulate the retinal images of cars,” said Milgram. “But we thought we could change the image of taillights. We guessed that if we could make a taillight system that appeared to change in size, it might have a significant effect on braking behaviour.”

Milgram and Li investigated their concept by using a low-fidelity driving simulator to test the reactions of 40 young male participants to driving scenarios under various visibility conditions. A roadway was projected onto a large screen and participants used a standard game control steering wheel and brake pedal to respond to the brake lights of a leading vehicle.

Li and Milgram manipulated optical looming cues of the lead vehicle – that is, the rear window and right and left taillights, which sit in a triangular formation – so they would imperceptibly expand and separate in response to the distance between and relative velocity of the two vehicles. In night-time driving conditions where drivers rely heavily on brake light cues to gauge their distance from other vehicles, drivers showed a clear response to the illusion of the leading car nearing more quickly.

“We got people to brake 100 to 300 milliseconds sooner,” said Milgram, who emphasizes that while the inter-vehicle separation sensing technology required to create such a braking system does exist, much more development and testing is necessary before implementation. “That fraction of time may seem small, but given the millions of braking events every day, the difference could mean thousands of averted crashes per year.”

Source: University of Toronto

Explore further: Hot cars at this year's Los Angeles Auto Show

Related Stories

Simple mathematical formula models lithium-ion battery aging

October 30, 2015

Hybrid electric vehicles, cell phones, digital cameras, and the Mars Curiosity rover are just a few of the many devices that use rechargeable lithium-ion batteries. Now a team of Penn State researchers has a simple mathematical ...

Where we are on the road to driverless cars

November 5, 2015

Who doesn't like the idea of getting in your car, sitting back finishing off your coffee and reading the paper while the vehicle whisks you to your destination? We're not quite there yet, but what is available are technologies ...

Recommended for you

Biologists trace how human innovation impacts tool evolution

November 24, 2015

Many animals exhibit learned behaviors, but humans are unique in their capacity to build on existing knowledge to make new innovations. Understanding the patterns of how new generations of tools emerged in prehistoric societies, ...

First Londoners were multi-ethnic mix: museum

November 23, 2015

A DNA analysis of four ancient Roman skeletons found in London shows the first inhabitants of the city were a multi-ethnic mix similar to contemporary Londoners, the Museum of London said on Monday.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.