Plug and Play Bone Repair: Printing of Bioceramic Implants

March 2, 2007

A modified ink-jet printer can be used to directly print layer upon layer of artificial bone for quick-fix grafts used in reconstructive surgery.

Bone takes a long time to grow and repair, so treating serious damage or carrying out reconstructive procedures can be a slow and painstaking process. Writing in issue 6 of Advanced Materials, Jake Barralet of the Faculty of Dentistry, at McGill University, (Montréal, Québec) and Uwe Gbureck, Department for Functional Materials in Medicine and Dentistry, University of Würzburg, (Bavaria) and their team describe a method for "printing" artificial bone from the same chemical components as living bone and including biomolecules that trigger blood vessel growth to bring the bone to life after it is implanted in the body.

The process could be much more effective and less risky than removing sections of bone from elsewhere in the body for grafting on to an injured site.

The McGill - Würzburg team has demonstrated how an artificial bone can be constructed using the minerals brushite and hydroxyapatite instead of conventional "ink" in their printer. By printing one layer on top of another they can build up a highly porous 3D bioceramic material resembling bone at room temperature.

The team also adds natural chemicals to stimulate blood vessel growth - vascular endothelial growth factor (VEGF) or copper sulphate. This allows them to incorporate into their model bone implants the necessary materials for stimulating blood vessel growth and allowing the artificial bone grafts to "grow" into the site being repaired.

Regenerative medicine is a growing field. Researchers are developing the various techniques that will allow them to construct tissues, including bone, muscle, and even whole organs, outside the human body for subsequent implantation. The biochemistry of tissue repair and integration of such engineered tissues does, however, complicate what would otherwise be a straightforward process of simply grafting the newly grown tissue on to the damage site.

Tissue growth, explain the researchers, is guided by a whole range of cellular signaling molecules that ebb and flow over time, switching on and off yet more molecules that trigger growth, and crucially, growth of blood vessels into a tissue.

By incorporating the blood vessel growth factors into their artificial bone implants, Barralet and colleagues hope that their approach will allow acceleration of integration of such implants into a graft site. "This low-temperature direct approach offers several practical advantages and may find application in bone grafting," the researchers say.

The team has so far tested blood vessel growth into the implant materials made with and without VEGF. They found that blood vessels can grow only one or two millimetres into the pores of VEGF-free artificial bone. In contrast, the artificial bone made with added VEGF promotes blood vessels growth throughout its network of pores. Such a demonstration bodes well for the further development of bespoke printable bone grafts.

Citation: Jake Barralet, Direct Printing of Bioceramic Implants with Spatially Localized Angiogenic Factors, Advanced Materials 2007, 19, No. 6, doi: 10.1002/adma.200601370

Source: Wiley

Explore further: New material could advance bone-grafting treatments for cancer patients

Related Stories

The life story of stem cells

November 9, 2015

Stem cells ensure the regeneration and maintenance of the body's tissues. Diseases like cancer can arise if they spiral out of control. In collaboration with doctors from Aachen University Hospital, scientists from the Max ...

Recommended for you

NASA's space-station resupply missions to relaunch

November 29, 2015

NASA's commercial space program returns to flight this week as one of its private cargo haulers, Orbital ATK, is to launch its first supply shipment to the International Space Station in more than 13 months.

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.