Biologists Develop Large Gene Dataset for Rice Plant

March 13, 2007
Biologists Develop Large Gene Dataset for Rice Plant
Plant biologists have reported a new understanding of how genes work in rice. Credit: Fangming Xie, IRRI

Scientists have reported development of a large dataset of gene sequences in rice. The information will lead to an increased understanding of how genes work in rice, an essential food for much of the world's population.

Plant biologist Blake Meyers at the University of Delaware and colleagues report their results in the March 11 on-line issue of the journal Nature Biotechnology.

Using advanced gene sequencing technologies and high-powered computer-based approaches, Meyers and colleagues examined both normal gene expression (via messenger ribonucleic acids, or mRNAs) as well as small ribonucleic acids (small RNAs) in rice.

The analysis of rice was based on gene sequences representing nearly 47 million mRNA molecules and three million small RNAs, a larger dataset than has been reported for any other plant species.

Small RNAs are considered one of most important discoveries in biotechnology in the last 10 years. Because they are so much smaller than mRNAs, small RNAs went unnoticed for many years, or were considered biologically unimportant, said Meyers.

Small RNAs are now known to play an important role in gene regulation, he said, adding that deficiencies in small RNA production can have a profound effect on development.

"Small RNAs also have been associated with other important biological processes, such as responses to stress," Meyers said. "Many of small RNAs in rice have related sequences in the many important cereal crop plants, including maize and wheat."

Research on small RNAs "is a leading edge in plant biotechnology," said Machi Dilworth, Director of the National Science Foundation (NSF)'s Division of Biological Infrastructure, which along with the U.S. Department of Agriculture, funded the research. "This work will contribute to an understanding of the role of small RNAs in gene expression not only in rice, but in all plants."

Source: NSF

Explore further: Gene network controls how many flowers and fruits plants will make in critical growth window

Related Stories

DNA methylation affects superiority of hybrid plants

October 31, 2016

Hybrid vigor refers to when a crossbreed plant or animal shows superior traits compared to its parents. A research group has discovered that a gene involved in maintaining DNA methylation is closely connected to hybrid vigor ...

Researchers look at small RNA pathways in maize tassels

August 22, 2014

Researchers at the University of Delaware and other institutions across the country have been awarded a four-year, $6.5 million National Science Foundation grant to analyze developmental events in maize anthers and tassels, ...

Recommended for you

Dark matter may be smoother than expected

December 7, 2016

Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought. An international team ...

Giant radio flare of Cygnus X-3 detected by astronomers

December 7, 2016

(Phys.org)—Russian astronomers have recently observed a giant radio flare from a strong X-ray binary source known as Cygnus X-3 (Cyg X-3 for short). The flare occurred after more than five years of quiescence of this source. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.