Automated analyzer for complex nuclear waste provides rapid results

March 28, 2007

Identifying and quantifying specific alpha- and beta-emitting radionuclides in liquid solutions can be challenging and time consuming – typically taking from days to weeks to get results back from an analytical laboratory. But, when an industrial process-scale plant requires that an accurate, reliable analysis be completed in near real-time from samples retrieved directly from the process line, the challenge could be overwhelming.

However, scientists at Pacific Northwest National Laboratory have assembled a robust, fully automated prototype process monitor to meet demanding production needs.

The device developed by PNNL scientists provides microwave-assisted sample pretreatment, flexible chemical separations capabilities, sensitive radiochemical detection, calibration and data analysis. PNNL presenter Matthew J. O’Hara said, "This is the most extreme example of automation ever demonstrated by our team."

The prototype system was originally created to perform rapid radiochemical analysis of technetium-99 in nuclear waste destined for vitrification at the Hanford Site’s Waste Treatment Plant in Washington state. Samples can be adjusted, separated and analyzed in less than 15 minutes to provide feedback on process performance.

While developed for specific radionuclides in high-level nuclear waste process streams, the analyzer is capable of being adapted for use on a wide range of applications requiring an integrated system that performs sample preparation, column separations, on-line detection and data analysis conducted rapidly and autonomously.

PNNL scientists Jay W. Grate and Matthew O’Hara will describe pioneering work in the development of automated radiochemical analysis systems, radionuclide sensors and process monitoring approaches in back-to-back presentations at the 233rd American Chemical Society Meeting in Chicago.

Source: Pacific Northwest National Laboratory

Explore further: Discarded electronics mismanaged within Europe equals about 10 times the volume of e-waste exported

Related Stories

Could urban disorder give way to sustainability?

August 24, 2015

An EPFL researcher is modeling cities in order to understand their metabolism and determine their ecological impact when they grow and change. Her research is aimed at identifying the urban form that is most efficient and ...

Nano-style sheets may aid health, shield ecosystem

August 13, 2015

Microscopically, "nanomembrane" sheets made from nylon resemble a tangled web. The tiny iron oxide particles on the fiber surfaces can help clean toxic chemicals from water, but if the particles get separated from the web, ...

Recommended for you

Long-sought chiral anomaly detected in crystalline material

September 3, 2015

A study by Princeton researchers presents evidence for a long-sought phenomenon—first theorized in the 1960s and predicted to be found in crystals in 1983—called the "chiral anomaly" in a metallic compound of sodium and ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Amateur paleontologist finds rare fossil of fish in Arizona

September 3, 2015

Growing up, Stephanie Leco often would dig in her backyard and imagine finding fossils of a tyrannosaurus rex. She was fascinated with the idea of holding something in her hand that was millions of years old and would give ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.