World's oldest rocks show how Earth may have dodged frozen fate of Mars

February 5, 2007
Doctoral Student Nicole Cates and Assistant Professor Stephen Mojzsis
Doctoral student Nicole Cates and Assistant Professor Stephen Mojzsis survey a landscape of ancient rocks in Hudson Bay, Quebec, in Canada confirmed by the CU-Boulder team to date back roughly 3.75 billion years, making them among the most oldest known rocks on Earth. Image courtesy CU-Boulder

Carbon dioxide, a greenhouse gas that has become a bane of modern society, may have saved Earth from freezing over early in the planet's history, according to the first detailed laboratory analysis of the world's oldest sedimentary rocks.

Scientists have theorized for years that high concentrations of greenhouse gases could have helped Earth avoid global freezing in its youth by allowing the atmosphere to retain more heat than it lost. Now a team from the University of Chicago and the University of Colorado at Boulder that analyzed ancient rocks from the eastern shore of Hudson Bay in northern Quebec, Canada, have discovered the first direct field evidence supporting this theory.

The study shows carbon dioxide in Earth's atmosphere could have sustained surface temperatures above freezing before 3.75 billion years ago according to the researchers, led by University of Chicago Assistant Professor Nicolas Dauphas. Co-authors on the study, which appeared online Jan. 16 in the journal Earth and Planetary Science Letters, included Assistant Professor Stephen Mojzsis and doctoral student Nicole Cates of CU-Boulder's geological sciences department and Vincent Busigny, now of the Institut de Physique du Globe in Paris.

The new study helps explain how Earth may have avoided becoming frozen solid early in its history, when astrophysicists believe the sun was 25 percent fainter than today. Previous studies had shown liquid water existed at Earth's surface even though the weak sun should have been unable to warm the planet above freezing conditions. But high concentrations of CO2 or methane could have warmed the planet, according to the research team.

The ancient rocks from Quebec contain iron carbonates believed to have precipitated from ancient oceans, according to the study. Since the iron carbonates could only have formed in an atmosphere containing far higher CO2 levels than those found in Earth's atmosphere today, the researchers concluded the early Earth environment was extremely rich in CO2.

"We now have direct evidence that Earth's atmosphere was loaded with CO2 early in its history, which probably kept the planet from freezing and going the way of Mars," said Mojzsis.

The CO2 could even have played a role as a "planetary thermostat," since cold, icy conditions on Earth would have decreased the chemical weathering of rocks and increased the amount of CO2 moving into the atmosphere, ratcheting up Earth's surface temperatures, according to Dauphas.

In a companion article that appeared online Feb. 2 in Earth and Planetary Science Letters, Mojzsis, Cates and CU-Boulder undergraduate Jon Adam used a technique known as uranium-lead dating to establish the ancient age of the Hudson Bay rocks. Discovered by Canadian scientists in 2001, the rocks were confirmed by Mojzsis and his team to be at least as old as an isolated outcropping of West Greenland rocks previously believed by researchers to be the oldest on Earth.

The CU-Boulder team analyzed the rocks by crushing them into powder and dating zircon crystals present in the rock, said Mojzsis. The technique allowed them to calculate the geologic age of the crystals based on the radioactive decay rate of the uranium and lead isotopes in relation to each other, a technique known to be accurate to 1 percent or less.

"Zircon is nature's best timekeeper," said Mojzsis. "The tests show that the rocks in Quebec are roughly 3.75 billion years old, about the same as the West Greenland rocks."

The landscape of the Hudson Bay region under study today, marked by hills of grassland and marsh peppered by lakes, streams and craggy outcroppings, is much different from the alien Earth of 3.8 billion years ago, said Mojzsis. In much earlier times, a dense atmosphere of CO2 would have given the sky a reddish cast, and a greenish-blue ocean of iron-rich water would have lapped onto beaches, he said.

While scientists have been concerned that the limited sample of Earth's oldest known rocks from West Greenland provided a biased view of early Earth, the Hudson Bay discovery essentially doubles the known amount of extremely ancient rocks, and there appear to be a number of similar, ancient outcrops in the vicinity. "We are now finding Earth's oldest rocks are not as rare as we once thought," Mojzsis said.

Source: University of Colorado at Boulder

Explore further: New family of luminescent materials could find broad uses in chemical and biological detectors

Related Stories

X-rays reveal fossil secrets

September 3, 2015

A sophisticated imaging technique has allowed scientists to virtually peer inside a 10-million-year-old sea urchin, uncovering a treasure trove of hidden fossils.

Clues from ancient Maya reveal lasting impact on environment

September 3, 2015

Evidence from the tropical lowlands of Central America reveals how Maya activity more than 2,000 years ago not only contributed to the decline of their environment but continues to influence today's environmental conditions, ...

Amateur paleontologist finds rare fossil of fish in Arizona

September 3, 2015

Growing up, Stephanie Leco often would dig in her backyard and imagine finding fossils of a tyrannosaurus rex. She was fascinated with the idea of holding something in her hand that was millions of years old and would give ...

Recommended for you

Ice sheets may be more resilient than thought

September 3, 2015

Sea level rise poses one of the biggest threats to human systems in a globally warming world, potentially causing trillions of dollars' worth of damages to flooded cities around the world. As surface temperatures rise, ice ...

Climate ups odds of 'grey swan' superstorms

August 31, 2015

Climate change will boost the odds up to 14-fold for extremely rare, hard-to-predict tropical cyclones for parts of Australia, the United States and Dubai by 2100, researchers said Monday.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

out7x
1 / 5 (1) May 21, 2009
Zircon oxygen dated 4.3Byr, from W.Australia, water evidence.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.