Study: Spinal cord can repair itself

Feb 14, 2007

U.S. scientists say they have disproved the long-held theory that the spinal cord is incapable of repairing itself. The Johns Hopkins University researchers say human nerve stem cells they transplanted into damaged spinal cords of rats have survived, grown and in some cases connected with the rats' own spinal cord cells.

Human nerve stem cells transplanted into rats’ damaged spinal cords have survived, grown and in some cases connected with the rats’ own spinal cord cells in a Johns Hopkins laboratory, overturning the long-held notion that spinal cords won’t allow nerve repair.

A report on the experiments will be published online this week at PLoS Medicine and “establishes a new doctrine for regenerative neuroscience,” says Vassilis Koliatsos, M.D., associate professor of neuropathology at Johns Hopkins. “The spinal cord, a part of the nervous system that is thought of as incapable of repairing itself, can support the development of transplanted cells,” he added.

“We don’t yet know whether the connections we’ve seen can transmit nerve signals to the degree that a rat could be made to walk again,” says Koliatsos, “We’re still in the proof of concept stage, but we’re making progress and we’re encouraged.”

In their experiments, the scientists gave anesthetized rats a range of spinal cord injuries to lesion or kill motor neurons or performed sham surgeries. They varied experimental conditions to see if the presence or absence of spinal cord lesions had an effect on the survival and maturation of human stem cell grafts. Two weeks after lesion or sham surgery, they injected human neural stem cells into the left side of each rat’s spinal cord.

After six months, the team found more than three times the number of human cells than they injected in the damaged cords, meaning the transplanted cells not only survived but divided at least twice to form more cells. Moreover, says Koliatsos, the cells not only grew in the area around the original injection, but also migrated over a much larger spinal cord territory.

Three months after injection, the researchers found evidence that some of the transplanted cells developed into support cells rather than nerve cells, while the majority became mature nerve cells. High-powered microscopic examination showed that these nerve cells appear to have made contacts with the rat’s own spinal cord cells.

Source: Johns Hopkins University

Explore further: Supercharging stem cells to create new therapies

Related Stories

Scientists unveil the structure of myelin

Jun 17, 2015

New research has shed light on the way in which our nerves conduct electrical signals around our bodies. The structure of myelin, the layer of insulating fat surrounding nerve cells of vertebrates, has now ...

Chameleon proteins make individual cells visible

May 19, 2015

Researchers discovered a new mechanism of how fluorescent proteins can change colour. It enables the microscopic visualization of individual cells in their three-dimensional environment in living organisms.

Grass plants can transport infectious prions

May 16, 2015

Grass plants can bind, uptake and transport infectious prions, according to researchers at The University of Texas Health Science Center at Houston (UTHealth). The research was published online in the latest ...

Recommended for you

Researchers reveal a genetic blueprint for cartilage

Jul 02, 2015

Cartilage does a lot more than determine the shapes of people's ears and noses. It also enables people to breathe and to form healthy bones—two processes essential to life. In a study published in Cell Re ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.