Scientists produce neurons from human skin

February 22, 2007

Scientists from Université Laval’s Faculty of Medicine have succeeded in producing neurons in vitro using stem cells extracted from adult human skin. This is the first time such an advanced state of nerve cell differentiation has been achieved from human skin, according to lead researcher Professor François Berthod. This breakthrough could eventually lead to revolutionary advances in the treatment of neurodegenerative illnesses such as Parkinson’s disease. Berthod and his team described the method used to produce these neurons in a recent issue of the Journal of Cellular Physiology.

The researchers used skin obtained from plastic surgery procedures. They subjected these skin samples to various treatments in order to extract neuron precursor cells, which they then proceeded to cultivate in vitro. Skin itself does not contain neurons, which are hosted in the spinal cord, but contains only their extensions, called "axons." The researchers’ challenge was thus to produce neurons from undifferentiated cells rather than multiply neurons from nerve cells.

Tests conducted by the researchers demonstrated that stem cells from the skin can proliferate and differentiate in vitro when placed in the appropriate environment. They progressively took on the oblong shape typical of neurons. At the biochemical level, researchers discovered that in the days following the start of the experiment, the cells began producing markers and molecules associated with the transmission of nerve impulse between neurons. "This suggests the beginning of synapse formation between neurons," points out Professor Berthod.

In the short term, this breakthrough might have an impact in the field of neuroscience research. "Producing neurons from skin cells could solve the problem of human neural cell availability for research," explains Berthod. "Since neurons do not multiply, researchers now have to rely on laboratory animal neurons to perform their experiments."

In the longer term, the ability to produce neurons from skin cells opens the door to revolutionary therapeutic applications. "We could take a patient’s skin cells and use them to produce perfectly compatible neurons, thus eliminating the risk of rejection. We could then transplant these nerve cells in the diseased areas of the brain," explains Berthod. "This type of procedure seems particularly interesting for diseases such as Parkinson’s, but it’s all theoretical for now. Before we can think of doing such things, we’ll have to improve nerve cell differentiation and prove that they can transmit nerve impulses," concludes the researcher.

Source: Université Laval

Explore further: Researchers build a crawling robot from sea slug parts and a 3-D printed body

Related Stories

New biomaterial developed for injectable neuronal control

July 1, 2016

In the campy 1966 science fiction movie "Fantastic Voyage," scientists miniaturize a submarine with themselves inside and travel through the body of a colleague to break up a potentially fatal blood clot. Right. Micro-humans ...

Scientists engineer tunable DNA for electronics applications

June 20, 2016

DNA may be the blueprint of life, but it's also a molecule made from just a few simple chemical building blocks. Among its properties is the ability to conduct an electrical charge, making one of the hottest areas in engineering ...

From skin cells to motor neurons

August 29, 2011

A team of Harvard stem cell researchers has succeeded in reprogramming adult mouse skin cells directly into the type of motor neurons damaged in amyotrophic lateral sclerosis (ALS), best known as Lou Gehrig’s disease, ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Cow embryos reveal new type of chromosome chimera

May 27, 2016

I've often wondered what happens between the time an egg is fertilized and the time the ball of cells that it becomes nestles into the uterine lining. It's a period that we know very little about, a black box of developmental ...

Shaving time to test antidotes for nerve agents

February 29, 2016

Imagine you wanted to know how much energy it took to bike up a mountain, but couldn't finish the ride to the peak yourself. So, to get the total energy required, you and a team of friends strap energy meters to your bikes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.