Rosetta lander measures Mars' magnetic environment around close approach

Feb 26, 2007 byline
Rosetta lander measures Mars' magnetic environment around close approach
This graph, drawn thanks to data collected by the ROMAP instrument on board Rosetta's Philae lander, shows how the magnetic environment of Mars becomes complex when the solar wind, initially proceeding unperturbed at supersonic speed (left of the image), encounters the boundary region of the magnetosphere (bow shock), gets decelerated to subsonic speed and becomes turbulent. The data were collected around closest approach to the Red Planet during the Mars swingby on 25 February 2007. Time is ploted on the horizontal axis versus intensity of the magnetic field on the vertical axis. Credits: ROMAP / Philae / ESA Rosetta

In addition to acquiring incredible images of Mars during the planetary swingby earlier today, Rosetta and its lander Philae continue returning data from the Red Planet. The ROMAP instrument on board Philae measured the intensity of the peculiar magnetic field of Mars around closest approach.

Philae's ROMAP (Rosetta Lander Magnetometer and Plasma Monitor) instrument aims ultimately to study the local magnetic field of Comet 67P/Churyumov-Gerasimenko and examine the intensity of the magnetic interaction between the comet and the solar wind in three spatial dimensions ('3D').

The cometary magnetic environment is similar to that of Mars. Mars doesn't have a global planetary magnetic field protecting it from the solar wind. Its complex and 'disturbed' magnetic environment is – in very simplified terms - the result of the combination of the weak magnetosphere surrounding the planet, under continuous attack from the solar wind, with the local magnetic spots (anomalies) that characterise the planet's crust.

The graph presented in this article plots time on the horizontal axis versus intensity of the magnetic field on the vertical axis.
It shows how the magnetic environment of Mars becomes complex when the solar wind, initially proceeding unperturbed at supersonic speed (left of the image), encounters the boundary region of the magnetosphere (bow shock), gets decelerated to subsonic speed and becomes turbulent. The turbulence continues in the ‘tail’ of the planet’s magnetosphere (right of the image).

These measurements are very important as they show how well the ROMAP instrument is performing. This data set is also almost unique, as the trajectory that Rosetta followed during the Mars swingby is very different from those usually followed by other spacecraft orbiting Mars: only the Russian probe Phobos-2 provided a similar insight into the plasma environment around Mars from this special viewpoint in space.

Source: ESA

Explore further: New Horizons sees more detail as it draws closer to Pluto

Related Stories

"Living outside the Earth is a huge challenge"

May 08, 2015

Susana Zanello is an expert of human adaptation to life in space. Invited as an academic guest at EPFL, this renowned scientist agreed to share her views on her research, exploration, future trips to Mars ...

Recommended for you

How comets were assembled

1 hour ago

Rosetta's target "Chury" and other comets observed by space missions show common evidence of layered structures and bi-lobed shapes. With 3D computer simulations Martin Jutzi of PlanetS at the University ...

Dawn spirals closer to Ceres, returns a new view

13 hours ago

A new view of Ceres, taken by NASA's Dawn spacecraft on May 23, shows finer detail is becoming visible on the dwarf planet. The spacecraft snapped the image at a distance of 3,200 miles (5,100 kilometers) ...

Ariane 5's second launch of 2015

May 28, 2015

An Ariane 5 lifted off last night from Europe's Spaceport in Kourou, French Guiana and delivered two telecom satellites into their planned orbits.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.