Physicists set 'speed limit' for future superconducting magnet

February 11, 2007

A research team led by a Northwestern University physicist has identified a high-temperature superconductor -- Bi-2212, a compound containing bismuth -- as a material that might be suitable for the new wires needed to one day build the most powerful superconducting magnet in the world, a 30 Tesla magnet.

The material currently used in magnetic resonance (MR) imaging machines in both hospitals and research laboratories -- a low-temperature superconducting alloy of the metallic element niobium -- has been pushed almost as far as it can go, to around 21 Tesla. (Tesla is used to define the intensity of the magnetic field.) There are no superconducting magnet wires currently available that can generate 30 Tesla.

"A new materials technology -- such as a technology based on high-temperature superconductivity -- is required to make the huge leap from 21 Tesla to 30 Tesla," said William P. Halperin, John Evans Professor of Physics and Astronomy in the Weinberg College of Arts and Sciences at Northwestern, who led the team. "We have shown that Bi-2212 could be operated at the same temperature as is presently the case for magnets made with niobium -- 4 degrees Kelvin -- and also achieve the stable state necessary for a 30 Tesla magnet."

The findings will be published online Feb. 11 by the journal Nature Physics.

"We are exploring nature's limitations, and our discovery has basic implications for the study of superconductors and for applications to magnetic resonance imaging," said Halperin. "The dream would be to have powerful magnets that don't require helium for cooling. Some day new materials might be discovered where this restriction is lifted, but it isn't possible at the present time."

A superconductor, when cooled to its appropriate temperature, conducts electricity without any resistance. Superconductivity first appears in Bi-2212 at a high temperature of 90 degrees Kelvin, but Halperin and his colleagues found that the stable state required in high-magnetic fields can be established only when the temperature falls below 12 degrees Kelvin. The team is the first to establish this limit for Bi-2212.

"Sometimes what seems to be bad can be good," said Bo Chen, lead author of the paper and a graduate student of Halperin's. "Our findings set a speed limit. If you go beyond this speed you may have trouble. Knowing the upper temperature limit is a kind of security."

"To create a 30 Tesla magnet, we need a superconducting material that can carry the required amount of electricity without blowing up," said Halperin. "We have found that the operating temperature for Bi-2212 must be below 12 degrees Kelvin. The good news is that this temperature can be reached by cooling the magnet with liquid helium. If we had found the upper limit to be 2 degrees Kelvin then the cryogenic requirements would be intractable."

MR imaging is widely used by hospitals for medical diagnosis, and scientists at universities, national laboratories and pharmaceutical companies use even more powerful MR technology to study DNA, proteins and other complex molecules. About a dozen labs around the country take advantage of the highest magnetic field now in use -- 21.1 Tesla, which produces a magnetic field 10 times larger than your average hospital machine. Increasing the field of the magnet even a small amount, from 21.1 to 22.2 Tesla, would increase the cost of the machine by two million dollars.

"A holy grail of the scientific community, as set out recently by the National Research Council, is to build a superconducting magnet of 30 Tesla," said Halperin. "In MR imaging, the higher the magnetic field, the higher the resolution, which provides scientists with more detail for analysis. A 30 Tesla magnet could drive significant advances in chemistry, biology and medicine."

Using MR techniques at the National High Magnetic Field Laboratory in Tallahassee, Fla., Halperin and his team studied Bi-2212, one of the "darlings" of superconductivity. To measure its properties, they put the rare isotope oxygen-17 into a crystal of Bi-2212, with the isotope acting as a probe, much like a fluorescent dye. They then determined the phase diagram of the material where superconductivity is stable, which showed high temperature and high magnetic field could not be achieved together.

"Now that we have this information about Bi-2212, the next question is, 'Can such a magnet actually be made?'" said Halperin. "I really don't know -- it depends on engineering and processing the materials to make them into wires. My fellow scientists and engineers will have to solve the materials problems, and they don't like to accept no as an answer."

Source: Northwestern University

Explore further: Superconductor survives ultra-high magnetic field

Related Stories

Superconductor survives ultra-high magnetic field

November 12, 2015

Physicists from the universities of Groningen and Nijmegen (the Netherlands) and Hong Kong have discovered that transistors made of ultrathin layers molybdenum disulfide (MoS2) are not only superconducting at low temperatures ...

Jupiter's moon Ganymede

October 16, 2015

In 1610, Galileo Galilei looked up at the night sky through a telescope of his own design. Spotting Jupiter, he noted the presence of several "luminous objects" surrounding it, which he initially took for stars. In time, ...

Probing spin liquids with a new pulsed-magnet system

August 30, 2010

Entirely new experimental vistas could be opened by a device called a precursor pulsed-magnet system developed by an international team of scientists. This system can generate magnetic fields as high as 30 Tesla for synchrotron ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.