Nano Printing Technique Produces Model Membranes

February 20, 2007

An international team of investigators based in the United States and Germany has modified the nanoscale printing technique known as dip-pen nanolithography to create large numbers of model cell membranes. This method, published in the journal Small, could open the door to a better understanding of how the cell membrane functions and could lead to new ways of getting therapeutic drugs into cells.

Cell membranes are incredibly complex structures comprising a mixture of fatty molecules known collectively as phospholipids, proteins, and numerous other molecules, including cholesterol. These components hold each other together in a fluid manner –while the overall structure of the cell membrane is durable, the individual molecules in it are relatively free to move around within the confines of the membrane.

Chad Mirkin, Ph.D., and colleagues at Northwestern University, and Steven Lenhert, Ph.D., and his collaborators at the University of Munster in Germany, worked together on this project. Mirkin, who is the principal investigator of the Nanomaterials for Cancer Diagnostics and Therapeutics Center for Cancer Nanotechnology Excellence, invented dip-pen nanolithography, which uses an atomic force microscope to place individual molecules onto a surface, such as a glass slide or silicon chip.

In this work, the investigators determined the optimal experimental conditions needed to use phospholipids as “ink” that they could print onto glass slides, polystyrene sheets, or silicon wafers. By carefully controlling the humidity and application rate, the researchers were able to deposit multiple phospholipids in precise patterns. Once deposited onto a substrate, the phospholipids formed a lipid bi-layer characteristic of cell membranes. The investigators note that they should be able to use dip-pen nanolithography to design the type of complex physical and chemical networks of materials that are found in cell membranes.

This work is detailed in a paper titled, “Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns.” Investigators from Forschungszentrum Karlsruhe in Germany also participated in this study. An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Explore further: Clay sheets stack to form proton conductors

Related Stories

Clay sheets stack to form proton conductors

July 13, 2015

Northwestern Engineering professor Jiaxing Huang has developed a cheaper, more stable proton-conducting system. To find the key ingredient, he had to look no further than his own backyard.

Direct 'writing' of artificial cell membranes on graphene

October 10, 2013

Graphene emerges as a versatile new surface to assemble model cell membranes mimicking those in the human body, with potential for applications in sensors for understanding biological processes, disease detection and drug ...

Recommended for you

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.