Opening and closing the genome

February 22, 2007

At any given time, most of the roughly 30,000 genes that constitute the human genome are inactive, or repressed, closed to the cellular machinery that transcribes genes into the proteins of the body. In an average cell, only about one in ten genes is active, or expressed, at any given moment, with its DNA open to the cell' transcriptional machinery.

A dynamic cast of gatekeeper enzymes controls this access to the DNA, adding and removing particular molecules to open or close the genome to transcription as needed. Fully explicating the complex interplay among these enzymes and the molecules they manage has been a primary goal for scientists seeking to understand the mechanisms governing gene control. These mechanisms are vital for health-- when they go wrong, diseases like cancer can result.

In study published online February 22 in Cell, researchers at The Wistar Institute identify an important new player in this gene-control system, an enzyme responsible for removing certain molecules, or marks, involved in opening or closing chromatin, the material that makes up chromosomes. The activity of this enzyme is thought to be widespread in the genome, likely affecting many genes.

"This enzyme removes methyl groups from a specific location where they facilitate opening of the chromatin for gene expression, and therefore this enzyme maintains a repressed state of gene expression," says Ramin Shiekhattar, Ph.D., a professor at The Wistar Institute and senior author on the Cell study. Currently, Shiekhattar is also a professor at the Center de Regulacio Genomica in Barcelona. "When the enzyme is not present, however, the marks are not removed, and the chromatin remains open for transcription."

The enzyme, called JARID1d, is the first identified member of a new family of enzymes that removes trimethylation from histone H3 at the lysine 4 location. Histones are critical components of chromatin. In mammalian genomes, trimethyl groups at the lysine 4 location of this histone have been known to be associated with gene activation. Shiekhattar and his team hypothesized the existence of an enzyme that would remove these trimethyl groups.

"We and others had wondered whether there might not be an enzyme able to remove these trimethyl marks," says Shiekhattar. "Such an enzyme would have the effect of setting the genes back to their original repressed state."

An important aspect of the work by Shiekhattar and his colleagues is their demonstration of an intimate connection between the histone demethylase enzyme JARID1d and Ring6a, a polycomb-like protein. Polycomb proteins are also known to play an important role in gene repression. Indeed, the findings show that Ring6a has the ability to regulate the enzymatic activity of the histone demethylase in vitro as well as in vivo. These results extend the role of transcriptional inhibitory polycomb complexes through their physical and functional link with histone demethylase enzymes.

Source: The Wistar Institute

Explore further: Core proteins exert control over DNA function

Related Stories

Core proteins exert control over DNA function

June 21, 2016

The protein complex that holds strands of DNA in compact spools partially disassembles itself to help genes reveal themselves to specialized proteins and enzymes for activation, according to Rice University researchers and ...

Eukaryote process of programmed fork arrest determined

June 14, 2016

A research collaboration between the Medical University of South Carolina, the Institute of Human Genetics in France, and Howard Hughes Medical Institute at Rockefeller University has revealed the means by which cells accomplish ...

Lethal reawakening

May 17, 2016

Retroviral DNAs integrate into host genomes, but their expression is normally repressed by cellular defense mechanisms. As an Ludwig-Maximilians-Universitaet (LMU) in Munich team now shows, when these measures fail, accumulation ...

A first of its kind tool to study the histone code

February 10, 2015

University of North Carolina scientists have created a new research tool, based on the fruit fly, to help crack the histone code. This research tool can be used to better understand the function of histone proteins, which ...

Recommended for you

CP violation or new physics?

July 25, 2016

(Phys.org)—Over the past few years, multiple neutrino experiments have detected hints for leptonic charge parity (CP) violation—a finding that could help explain why the universe is made of matter and not antimatter. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.