Fragile X protein may play role in Alzheimer’s disease

February 14, 2007

A brain afflicted by severe Alzheimer's disease is a sad sight, a wreck of tangled neural connections and organic rubble as the lingering evidence of a fierce internal battle.

A new study has now uncovered an unexpected link between this devastating neural degeneration and a protein whose absence causes a different neurological disease - the inherited mental retardation disorder called fragile X syndrome. In the Feb. 13 issue of the journal Public Library of Science Biology, University of Wisconsin-Madison researchers report that, in mice, the fragile X mental retardation protein may regulate the material responsible for the plaques and cell death seen in the brains of Alzheimer's patients. If similar research can be confirmed in humans, it offers a glimmer of hope for developing a treatment for Alzheimer's disease.

The telltale plaques of Alzheimer's disease contain remnants of dying cells and clumps of a small, sticky scrap of a protein called beta-amyloid. When the gummy protein builds up in the brain, it can band together and wreak havoc inside neurons, damaging and ultimately killing them.

No one knows what triggers toxic beta-amyloid accumulation in the brain, but the sticky bits are made when the larger amyloid precursor protein is chopped up by enzymes, says Jim Malter, a pathologist in the UW-Madison School of Medicine and Public Health and senior author of the new study. Scientists have long hoped to prevent or treat Alzheimer's disease by keeping the amyloid precursor protein in check: less precursor should mean less of the dangerous pieces, which in turn should mean less cell death.

The current study pinpoints the fragile X mental retardation protein as an important player in this control. Malter and colleague Cara Westmark found that it normally restricts production of the full-length amyloid precursor in mice, releasing the protein's synthesis template only when the nerve cell is stimulated. By linking protein synthesis to neural activity, this regulation helps the brain cement useful connections while ignoring or eliminating worthless ones.

However, Malter and Westmark found that mice lacking the fragile X protein lost this level of control over the amyloid precursor and, subsequently, had much higher levels of the toxic beta-amyloid in their brains.

Links between developmental disabilities and degenerative disease do make sense, Malter says. Mental retardation and cognitive decline can reflect similar underlying problems, such as difficulties forming or maintaining correct neural pathways. Malter explains that the amyloid precursor protein was already known to be important at the sites of connections between neural cells and unusually high levels have been reported in patients with other developmental disorders, including autism and Down's syndrome.

While the new finding does not mean that the fragile X protein is directly involved in Alzheimer's disease, Malter says the result highlights a possible target for therapy. "Right now, there are no good drugs for Alzheimer's disease," he says. "The idea of reducing beta-amyloid seems sound in terms of treatment."

Rather than target the fragile X protein itself, Malter envisions using drugs to block a cell-surface receptor, a gateway to the cell that kicks off the fragile X protein's response to neural stimulation. In fact, he says, several drugs targeting the receptor already exist, originally developed decades ago as anti-anxiety treatments. He plans to start testing these compounds in mice to see if they can reduce build-up of the toxic protein.

If such drugs are effective against dangerous protein accumulation, they might be used for patients in the early stages of Alzheimer's to prevent disease progression. Though unlikely to reverse existing Alzheimer's symptoms, Malter says, "Keeping people at the same place would be a victory."

Source: by Jill Sakai, University of Wisconsin-Madison

Explore further: Secrets of dark proteome

Related Stories

Secrets of dark proteome

November 19, 2015

Proteins are often referred to as the building blocks of life, and make up about 15 per cent of the mass of the average person, performing a wide variety of essential functions in the body.

How a molecular motor untangles protein

October 1, 2015

A marvelous molecular motor that untangles protein in bacteria may sound interesting, yet perhaps not so important. Until you consider the hallmarks of several neurodegenerative diseases—Huntington's disease has tangled ...

New protein manufacturing process unveiled

September 10, 2015

Researchers from Northwestern University and Yale University have developed a user-friendly technology to help scientists understand how proteins work and fix them when they are broken. Such knowledge could pave the way for ...

New field of application for versatile helper

October 13, 2015

In Alzheimer's disease proteins clump together to long fibrils causing the death of nerve cells. Small heat shock proteins can counteract this effect. Scientists, therefore, hope to deploy them as agents in the treatment ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.