Brightly Fluorescent Europium Nanoparticles May Improve Cancer Assays

Feb 05, 2007

Researchers at the University of California, Davis, have created a new type of nanoparticle that could be used in tests for medical diagnostics, environmental pollution, and contamination of food products. The particles, about 100 to 200 nanometers in size, are luminescent, magnetic, and inexpensive to make, and can be tagged with antibodies designed to detect cancer-associated proteins.

The new nanoparticles, described in a paper published in the journal Nanotechnology, are made using a low-cost, high-capacity process known as spray pyrolysis. In spray pyrolysis, raw materials are mixed in a solvent and then sprayed through a flame. This method is already used in the chemical industry to make products such as fumed silica and carbon black.

The resulting nanoparticles have a magnetic core of iron oxide or iron/neodymium/cobalt oxide coated in a shell of europium and gadolinium oxide. When stimulated with a laser, europium emits red light at a very specific wavelength. The investigators, led by Ian Kennedy, Ph.D., note that they can also label these nanoparticles with other fluorescent labels in different colors. The built-in europium-triggered luminescence acts as an internal standard, making it easier to carry out accurate quantitative assays, explains Kennedy.

Because of their iron-based core, the nanoparticles also produce a significant magnetic signal that can be detected using magnetic resonance imaging. The nanoparticles’ magnetic properties can be used to separate them in various analytical assays. The particles can also be coated with short pieces of DNA and used for genetic analysis, including tests for cancer-related genes.

This work is detailed in a paper titled, “Magnetic/luminescent core/shell particles synthesized by spray pyrolysis and their application in immunoassays with internal standard.” This work was published online in advance of print publication. An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Explore further: Nanotechnology helps protect patients from bone infection

Related Stories

Ultra-small block 'M' illustrates big ideas in drug delivery

Feb 26, 2015

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

'Ferropaper' is new technology for small motors, robots

Jan 05, 2010

(PhysOrg.com) -- Researchers at Purdue University have created a magnetic "ferropaper" that might be used to make low-cost "micromotors" for surgical instruments, tiny tweezers to study cells and miniature ...

Recommended for you

Non-aqueous solvent supports DNA nanotechnology

3 hours ago

Scientists around the world are using the programmability of DNA to assemble complex nanometer-scale structures. Until now, however, production of these artificial structures has been limited to water-based ...

Nanosilver and the future of antibiotics

4 hours ago

Precious metals like silver and gold have biomedical properties that have been used for centuries, but how do these materials effectively combat the likes of cancer and bacteria without contaminating the ...

Engineering phase changes in nanoparticle arrays

May 25, 2015

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have just taken a big step toward the goal of engineering dynamic nanomaterials whose structure and associated properties can be ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.