Brightly Fluorescent Europium Nanoparticles May Improve Cancer Assays

February 5, 2007

Researchers at the University of California, Davis, have created a new type of nanoparticle that could be used in tests for medical diagnostics, environmental pollution, and contamination of food products. The particles, about 100 to 200 nanometers in size, are luminescent, magnetic, and inexpensive to make, and can be tagged with antibodies designed to detect cancer-associated proteins.

The new nanoparticles, described in a paper published in the journal Nanotechnology, are made using a low-cost, high-capacity process known as spray pyrolysis. In spray pyrolysis, raw materials are mixed in a solvent and then sprayed through a flame. This method is already used in the chemical industry to make products such as fumed silica and carbon black.

The resulting nanoparticles have a magnetic core of iron oxide or iron/neodymium/cobalt oxide coated in a shell of europium and gadolinium oxide. When stimulated with a laser, europium emits red light at a very specific wavelength. The investigators, led by Ian Kennedy, Ph.D., note that they can also label these nanoparticles with other fluorescent labels in different colors. The built-in europium-triggered luminescence acts as an internal standard, making it easier to carry out accurate quantitative assays, explains Kennedy.

Because of their iron-based core, the nanoparticles also produce a significant magnetic signal that can be detected using magnetic resonance imaging. The nanoparticles’ magnetic properties can be used to separate them in various analytical assays. The particles can also be coated with short pieces of DNA and used for genetic analysis, including tests for cancer-related genes.

This work is detailed in a paper titled, “Magnetic/luminescent core/shell particles synthesized by spray pyrolysis and their application in immunoassays with internal standard.” This work was published online in advance of print publication. An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Explore further: Doubt cast on recent study claiming to have unraveled the last mystery of electromagnetism

Related Stories

Sandcastles inspire new nanoparticle binding technique

August 5, 2015

If you want to form very flexible chains of nanoparticles in liquid in order to build tiny robots with flexible joints or make magnetically self-healing gels, you need to revert to childhood and think about sandcastles.

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

Recommended for you

Building a better liposome

October 13, 2015

Using computational modeling, researchers at Carnegie Mellon University, the Colorado School of Mines and the University of California, Davis have come up with a design for a better liposome. Their findings, while theoretical, ...

Dielectric film has refractive index close to air

October 12, 2015

Researchers from North Carolina State University have developed a dielectric film that has optical and electrical properties similar to air, but is strong enough to be incorporated into electronic and photonic devices - making ...

Have your drug nano-delivered via microbubble

October 12, 2015

"Colloidal delivery system" and "nanoparticle" are probably not terms you find yourself using in day-to-day interactions, but for UC's Yoonjee Park, assistant professor in the College of Engineering and Applied Science biomedical ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.