Ancient genes used to produce salt-tolerant wheat

February 1, 2007

Two recently discovered genes from an ancient wheat variety have led to a major advance in breeding new salt-tolerant varieties.

In a recent set of papers published in the journal Plant Physiology researchers describe the two genes – known as Nax1 and Nax2. The genes work by excluding salt from different parts of the plant: one from the roots, the other from the leaves. The discovery of the two genes is the subject of international patents.

“The two genes originally came from a wheat ancestor, Triticum monococcum,” says research team leader, CSIRO Plant Industry’s Dr Rana Munns. “They were unwittingly crossed into a durum wheat line about 35 years ago and are normally not present in any modern wheat.”

The project began when the CSIRO team used a highly accurate selection method – based on their understanding of how plants tolerate salt – to identify wheat varieties that could cope with higher salinity. They were particularly interested in the premium-priced durum wheat, which is much more salt-sensitive than bread wheat.

“We screened a hundred durum wheats from the Australian Winter Cereals Collection at Tamworth, which contains tens of thousands of wheat types,” Dr Munns says. “Highlighting the fact that the science of plant breeding sometimes relies on an element of good fortune, we were lucky to find the durum variety with the ancient genes straight away, otherwise we might have been looking for years.”

The team used their knowledge of the two genes to construct molecular markers, which are now in use in CSIRO’s wheat breeding program. A durum wheat variety as salt-tolerant as bread wheat is in advanced field trials and could be commercially available in three years. Even better durum wheats are in development and the program has been expanded to include bread wheat.

“Bread wheat is quite tolerant to salt, but we think it too can be improved. Our aim is to eventually produce wheats able, like barley, to grow in highly saline soils,” Dr Munns says.

Over six per cent of the world’s arable land is affected by salinity. Salt tolerant crops can provide farmers with income for remediation, as well as helping to stabilise soil from wind and water erosion.

Source: CSIRO

Explore further: Researchers report breakthrough on salt-tolerant durum wheat

Related Stories

Scab resistance in durum wheat

September 16, 2011

Durum wheat is a valuable cereal crop widely used for human consumption in the United States, Canada, and several European countries. Scab or Fusarium head blight is one of the crop's most serious diseases, reducing its grain ...

Researchers developing better wheat

February 16, 2006

Eighteen universities across the United States are combining desirable genes from different varieties of wheat to make better and more competitive varieties.

Researchers develop highest yielding salt tolerant wheat

April 15, 2010

( -- In a major breakthrough for wheat farmers in salt-affected areas, CSIRO researchers have developed a salt tolerant durum wheat that yields 25 per cent more grain than the parent variety in saline soils.

New hope for fighting major fungal disease in durum wheat

January 18, 2015

A variety of wheat that is resistant to a destructive fungal disease has been found to have specialized and protective cell walls, according to research published in BMC Plant Biology. These insights could help to produce ...

Researchers find rust resistance genes in wild grasses

October 21, 2008

( -- University of Adelaide researchers have identified new sources of stem and leaf rust resistance in wild grass relatives of wheat sourced mostly from the 'fertile crescent' of the Middle East.

Recommended for you

Don't forget plankton in climate change models, says study

November 26, 2015

A new study from the University of Exeter, published in the journal Ecology Letters, found that phytoplankton - microscopic water-borne plants - can rapidly evolve tolerance to elevated water temperatures. Globally, phytoplankton ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.