Researchers observe superradiance in a free electron laser

Jan 19, 2007

A team of researchers at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory has generated extremely short light pulses using a new technique that could be used in the next generation of light source facilities around the world to catch molecules and atoms in action.

Published on January 19, 2007 in Physical Review Letters, the research team's findings describe the use of a laser to control the pulse duration of light from a free electron laser (FEL), a type of light source with a brightness up to one billion times higher than that of ordinary synchrotron light. The team also reports the first experimental observation of a phenomenon called superradiance.

Most of the world's light sources – facilities such as Brookhaven's National Synchrotron Light Source (NSLS) that produce x-ray, ultraviolet, and infrared light for research in fields ranging from biology to nanotechnology – produce a broad range of wavelengths, or colors of light.

This is ideal for hosting a wide variety of experiments, but to understand how molecules change their structure in chemical and biological systems, scientists need extremely short pulses of light (shorter than one trillionth of a second) with short wavelengths. This is where FELs are valuable, as they can provide pulses of light that are a thousand times shorter than those produced at existing light sources and contain a million more photons per pulse. Like a strobe flash, the ultra-short FEL allows scientists to take time-resolved images of biological and chemical processes and various other atomic-scale events.

"In existing light sources, we just take a static snapshot of a sample," said NSLS physicist Takahiro Watanabe, one of the paper's authors. "We get the location of the pieces, but what happens if the pieces move? You don't know how they actually got there. What you want is to take images along the way to see these things move, and that's where these ultra-fast sources come into play."

Synchrotron light is produced by accelerating of a beam of electrons and sending it through a magnetic field. Generally, the pulse duration of both synchrotron and FEL light is determined by that of the electron beam. Tremendous effort has been devoted to generating short electron pulses, but scientists have been unable to shorten the electron pulse past a certain point because of forces that repel the electrons in the beam away from each other. At Brookhaven's Source Development Lab (SDL), researchers found a way to generate a very short FEL pulse that doesn't depend on the length of the electron pulse.

This was done using a titanium-sapphire laser that combines a femtoseconds pulse of light with the much longer electron beam. A femtosecond is extremely fast – one billionth of one millionth of a second. This leads to a femtosecond FEL pulse that keeps growing in intensity and shortening in time duration, which is attributed to a phenomenon called superradiance.

"The electron beam and the laser beam don't move at the same speed, they slip a little bit," Watanabe said. "So this scenario provides new areas on the electron beam for the interaction to continue and allows the intensity of light to keep growing."

Superradiance was first proposed in 1954 as the most efficient way to extract energy from either atomic or molecular systems, but the SDL research group is the first to experimentally observe its effects in this type of FEL setup. Understanding how to produce these intense, ultrafast pulses of light could help scientists around the world as they begin to construct the next generation of light source facilities.

Source: Brookhaven National Laboratory

Explore further: Team invents microscopic sonic screwdriver

Related Stories

Exposing breast cancer using nanoscale polymers

May 13, 2015

Photoacoustic imaging is a ground-breaking technique for spotting tumors inside living cells with the help of light-absorbing compounds known as contrast agents. A*STAR researchers have now discovered a way ...

How we recreated the early universe in the laboratory

May 12, 2015

One of the all-time great mysteries in physics is why our universe contains more matter than antimatter, which is the equivalent of matter but with the opposite charge. To tackle this question, our international team of researchers have managed to create a plasm ...

Recommended for you

Researchers prove magnetism can control heat, sound

May 28, 2015

Phonons—the elemental particles that transmit both heat and sound—have magnetic properties, according to a landmark study supported by Ohio Supercomputer Center (OSC) services and recently published by ...

How researchers listen for gravitational waves

May 28, 2015

A century ago, Albert Einstein postulated the existence of gravitational waves in his General Theory of Relativity. But until now, these distortions of space-time have remained stubbornly hidden from direct ...

What's fair?: New theory on income inequality

May 27, 2015

The increasing inequality in income and wealth in recent years, together with excessive pay packages of CEOs in the U.S. and abroad, is of growing concern, especially to policy makers. Income inequality was ...

Scientists one step closer to mimicking gamma-ray bursts

May 27, 2015

Using ever more energetic lasers, Lawrence Livermore researchers have produced a record high number of electron-positron pairs, opening exciting opportunities to study extreme astrophysical processes, such ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.