Stealth technology maintains fitness after sex

January 12, 2007

Pathogens can become superbugs without their even knowing it, research published today in Science shows. 'Stealth' plasmids - circular 'DNA parasites' of bacteria that can carry antibiotic-resistance genes - produce a protein that increases the chances of survival and spread of the antibiotic-resistant strain.

Low-cost plasmids, described for the first time in the study are a threat to use of antibiotics.

Plasmids are naturally occurring 'DNA parasites' of many bacterial species and have been known about for over 30 years. Some are able to transfer themselves from one bacterial cell to another through a sex-like process called conjugation, contributing to bacterial evolution. Worryingly, as well as copying themselves plasmids can pick up and transfer bacterial genes, such as those that make pathogens resistant to antibiotics.

However, the plasmid comes at a cost to the host bacterium: gaining a plasmid can reduce the host's ability to grow and reduce its fitness. When antibiotic treatment is stopped, the new microbe–plasmid combination will be eliminated quickly through fierce competition from more 'fit', plasmid-free bacteria.

The research teams, led by Professor Charles J. Dorman at Trinity College Dublin, Ireland, and Dr John Wain at the Wellcome Trust Sanger Institute in Cambridge, UK, have discovered that an important class of plasmids use a stealth gene (called sfh) to allow entry into a new bacterium with minimal reduction in fitness.

With the low-cost version of the resistance plasmid they have described in Salmonella, resistant bacteria are likely to survive and the resistance genes to persist even if antibiotic therapy is stopped.

Their research shows that sfh codes for a protein that is very similar to another bacterial protein: the role of the protein is to organise the genetic material in bacterium and control activity of many genes, including those involved in causing disease. The sfh protein binds to the new plasmid DNA, preventing its detection by the bacterium.

"The bacterial protein, called H-NS, is a very important molecule and affects the way a bacterial pathogen operates. By bringing in its own supply of the H-NS-like stealth protein (called Sfh), the plasmid avoids interfering with the natural balance of H-NS and DNA in the cell," explained Professor Dorman.

"Our work suggests that bacterial fitness can be manipulated by altering the proportions of H-NS and DNA in the cell, perhaps through the use of drugs, an insight that may be exploited in the future to prevent or to fight infection."

Bringing its own supply of the host-like protein is clearly an advantage for the plasmid, suggesting that the normal supply of H-NS in the bacterium may become limited when new DNA is imported. If a modified plasmid, lacking the sfh gene, is transferred to Salmonella, the effects of the plasmid are very rapidly detected.

Bacteria can acquire and transfer resistance genes through a variety of methods, but this new study shows how a single gene has the potential to increase dramatically the chance of successful - and health-threatening - transfer and survival of a battery of antibiotic-resistance genes.

The consequences for managing disease - especially in developing countries - are significant, explained Dr John Wain: "These plasmids are found in many pathogenic bacteria including those that cause typhoid and paratyphoid fever. Both of these diseases are increasing in the developing world and in the UK we are seeing more and more imported cases.

"But understanding is not enough: we now need to exploit this information to try to prevent the plasmid spreading any further."

Source: Wellcome Trust Sanger Institute

Explore further: Researchers discover how CRISPR/Cas steals foreign DNA for the bacterial immune system

Related Stories

Programmable DNA scissors found for bacterial immune system

June 28, 2012

( -- Genetic engineers and genomics researchers should welcome the news from the Lawrence Berkeley National Laboratory (Berkeley Lab) where an international team of scientists has discovered a new and possibly more ...

Protein could put antibiotic-resistant bugs in handcuffs

June 9, 2014

Staph infections that become resistant to multiple antibiotics don't happen because the bacteria themselves adapt to the drugs, but because of a kind of genetic parasite they carry called a plasmid that helps its host survive ...

Recommended for you

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...

Scientists overcome key CRISPR-Cas9 genome editing hurdle

December 1, 2015

Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on "off-target" ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Xbox gaming technology may improve X-ray precision

December 1, 2015

With the aim of producing high-quality X-rays with minimal radiation exposure, particularly in children, researchers have developed a new approach to imaging patients. Surprisingly, the new technology isn't a high-tech, high-dollar ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.