Sharp Develops Mass-Production Technology for Triple-Junction Thin-Film Solar Cells

January 25, 2007
Sharp Develops Mass-Production Technology for Triple-Junction Thin-Film Solar Cells

Sharp Corporation has successfully developed mass-production technology for stacked triple-junction thin-film solar cells by turning a conventional two-active-layer structure (amorphous silicon plus microcrystalline silicon) into a triple-junction structure with amorphous silicon (two active layers) and microcrystalline silicon (single active layer).

This new architecture boosts cell conversion efficiency from 11% to 13% and module conversion efficiency from 8.6% to 10%. Mass production is slated to begin in May 2007 at Sharp’s Katsuragi Plant in Nara Prefecture.

Creating two amorphous silicon active layers significantly increases voltage levels, and structuring the cell to have three active layers in combination with microcrystalline silicon decreases light-induced degradation (drop in conversion efficiency). The result is high conversion efficiencies at the top levels in the industry, with cell conversion efficiency at 13% and module conversion efficiency at 10%.

Normally, the shift from a two-layer structure to a three-layer structure would demand an increase in production equipment, but these newly developed thin-film solar cells can be fabricated on the same equipment as conventional tandem (two-layer) cells. Consequently, the shift to multiple active layers enables increases in conversion efficiencies and thus a lower price per watt without the need for expensive, large-scale equipment.

In addition, using this triple-junction thin-film solar cell in Sharp’s Lumiwall Illuminating Solar Panel, a combination of solar module and LEDs, or in transparent thin-film solar modules designed for use as architectural elements, will enable higher power output. Expectations are high that this new development will expand the range of applications for these products even further.

Source: Sharp Corporation

Explore further: Graphene as a front contact for silicon-perovskite tandem solar cells

Related Stories

Finding a way to boost efficiency of CIGS solar cells

September 28, 2015

CIGS (copper-indium-gallium-selenide) solar cells are compound thin-film solar cells and the most established alternative to silicon solar cells. Solar conversion efficiencies of over 20% have recently been achieved in CIGS ...

Charge transport in hybrid silicon solar cells

August 17, 2015

An HZB team headed by Prof. Silke Christiansen has made a surprising discovery about hybrid organic/inorganic solar cells. Contrary to expectations, a diode composed of the conductive organic PEDOT:PSS and an n-type silicon ...

Recommended for you

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 18, 2008
How transparent is the overall solar pannel? Is there a way to make the pannel transparent enough to see through comfortably?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.