Scientists create wrinkled 'skin' on polymers

Jan 16, 2007
Scientists create wrinkled 'skin' on polymers
Wrinkled hard skin on polymer surface induced by focused ion beam. The wrinkles are hierarchical with the primary wavelength of 465 nm. Photo courtesy / Moon et al.

Applied scientists demonstrated a new method for developing wrinkled hard skins on the surface areas of polymers using a focused ion beam. By controlling the direction and intensity of the ion beam, the researchers literally sculpted patterns on flat areas of polydimethylsiloxane, a silicon-based organic polymer (more commonly known as the primary ingredient in Silly Putty). The technique has potential use for biological sensors and microfluidic devices and may offer new ways to build custom-made cell templates for tissue engineering.

The work is a collaboration among researchers at Harvard University and Seoul National University. The Harvard group consisted of John W. Hutchinson, Abbott and James Lawrence Professor of Engineering, Myoung-Woon Moon, Post-doctoral Fellow, and Ashkan Vaziri, Lecturer on Engineering and Research Associate in Applied Mechanics, all of Harvard Engineering and Applied Sciences. Their findings were published in the Proceedings of the National Academy of Sciences. The researchers have also filed for a U.S. patent covering the discovery.

"This technique is a one-step process for creating wrinkled skins," explains Vaziri. "The method is more robust compared with traditional techniques. The patterns can be generated along desired paths by simply controlling the relative movement of the ion beam and polymeric substrate. It's almost like using an airbrush on fabric. At a smaller scale the desired morphology of wrinkles can be achieved by controlling the ion beam intensity."

Because only the areas exposed to the beam are affected, the method enabled the scientists to create a variety of patterns--from simple one-dimensional wrinkles to peculiar and complex hierarchical nested wrinkles--along desired paths. Specific examples to date include "S" shapes, circular patterns, and long horizontal channels akin to the repeating tines of a closed zipper.

"Irradiation by the ion beam alters the chemical composition of the polymer close to its surface and forms a thin stiff skin which wants to expand," explains Vaziri. "The consequent mismatch between the mechanical strain of the generated stiff skin and the underlying polymeric substrate, almost like a tug-of-war, buckles the skin and forms the wrinkle patterns."

Such patterns can be used in the construction of microfluidic devices for particle separation and mixture and also have potential use in designing biosenors. The researchers have also started a close collaboration with scientists at the Harvard-MIT Division of Health Sciences and Technology aimed at exploring the behavior of living cells on these patterned substrates. Such research may lead to the development of an effective and robust method to build custom templates for engineering and growing tissues.

"We are approaching this field of research from various directions," says Vaziri. "At the moment we are looking at the effect of ion beam energy and have been able to reduce the wavelength of the wrinkles to 50 nanometers. Manipulation at such a small scale makes this method even more attractive. We are also building multifunctional microfluidic devices for the mixing of flow at very small scales and stretching of proteins and DNA. These new efforts, while at early stages of development, are very promising."

Source: Harvard University

Explore further: OU professor developing vaccine to protect global communities from malaria

Related Stories

X-ray imaging reveals secrets in battery materials

Jun 18, 2015

In a new study, researchers explain why one particular cathode material works well at high voltages, while most other cathodes do not. The insights, published in the 19 June issue of the journal Science, could ...

Diamond-like coatings save fuel

Jun 08, 2015

Coating engine components with hard carbon reduces friction to almost zero – a development that could save billions of liters of fuel worldwide every year. Now researchers have developed a new laser method ...

Organic nanoparticles, more lethal to tumours

May 18, 2015

Radiotherapy used in cancer treatment is a promising treatment method, albeit rather indiscriminate. Indeed, it affects neighbouring healthy tissues and tumours alike. Researchers have thus been exploring the possibilities ...

Recommended for you

Substrates change nanoparticle reactivity

4 hours ago

(Phys.org)—Nanoscale materials tend to behave differently than their bulk counterparts. While there are many theories as to why this happens, technological advances in scanning tunneling microscopy (STM) ...

Research could help point the finger at drug dealers

4 hours ago

An innovative technology pioneered by Sheffield Hallam University academics can detect the presence of a range of illegal and designer drugs from a single fingerprint, which could be a valuable new tool in bringing drug dealers ...

Reviving cottonseed meals adhesives potential

6 hours ago

Cottonseed meal—the leftovers after lint and oil are extracted from cottonseed—is typically fed to ruminant livestock, such as cows, or used as fertilizer. But Agricultural Research Service scientists ...

New concrete composite can heal itself

7 hours ago

In the human body, small wounds are easily treated by the body itself, requiring no further care. For bigger wounds to be healed, the body may need outside assistance. Concrete is like a living body, in that ...

Actuators that mimic ice plants

7 hours ago

Engineers developing moveable robot components may soon take advantage of a trick plants use. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam and Harvard University in Cambridge ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.