Scientists use nanocrystals as dopants

January 23, 2007

U.S. scientists discovered that nanocrystals can mimic atoms in solid-state devices by altering their electrical properties, thereby acting as dopants.

Jeffrey Urban and colleagues at IBM's Watson Research Center investigated the electrical properties of films obtained by the aggregation of PbTe and Ag2Te nanocrystals. When comparing the conductivity of films with different proportions of the two constituents, they found that when both types of crystals were present, the conductivity could be up to three orders of magnitude higher than in either of the single-component cases.

Nanocrystal assemblies can be seen as materials in which the nanocrystals -- consisting of thousands of atoms -- act as the basic elements, with the advantage that the structure can be precisely designed.

The researchers said the extension of the nanocrystal-atom analogy to the concept of doping -- the process of adding an impurity to modify electrical properties -- opens unexpected opportunities for the design of solid-state devices based on such aggregates.

The study appears in the current issue of Nature Materials.

Copyright 2007 by United Press International

Explore further: White lasers demonstrates data speeds of up to 2 Gbps

Related Stories

'Nanocrystal doping' enhances semiconductor nanocrystals

April 4, 2011

Researchers at the Hebrew University of Jerusalem have achieved a breakthrough in the field of nanoscience by successfully altering nanocrystal properties with impurity atoms -- a process called doping – thereby opening ...

Gold-tipped nanocrystals developed by Hebrew University

June 17, 2004

"Nanodumbells" – gold-tipped nanocrystals which can be used as highly-efficient building blocks for devices in the emerging nanotechnology revolution – have been developed by researchers at the Hebrew University of Jerusalem. ...

Perfectly doped quantum dots yield colors to dye for

May 10, 2013

(Phys.org) —Quantum dots are tiny nanocrystals with extraordinary optical and electrical properties with possible uses in dye production, bioimaging, and solar energy production. Researchers at the University of Illinois ...

Recommended for you

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Neuromorphic computing mimics important brain feature

August 18, 2016

(Phys.org)—When you hear a sound, only some of the neurons in the auditory cortex of your brain are activated. This is because every auditory neuron is tuned to a certain range of sound, so that each neuron is more sensitive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.