Scientists Discover Gold Clusters Stabilize Platinum Electrocatalysts For Use in Fuel Cells

January 12, 2007
Scientists Discover Gold Clusters Stabilize Platinum Electrocatalysts For Use in Fuel Cells
(Clockwise) Brookhaven Lab researchers Kotaro Sasaki, Junliang Zhang, Eli Sutter and Radoslav Adzic view gold clusters on a single-crystal platinum surface using a scanning tunneling microscope.

Platinum is the most efficient electrocatalyst for accelerating chemical reactions in fuel cells for electric vehicles. In reactions during the stop-and-go driving of an electric car, however, the platinum dissolves, which reduces its efficiency as a catalyst. This is a major impediment for vehicle-application of fuel cells.

Now, scientists at the U.S. Department of Energy's Brookhaven National Laboratory have overcome this problem. Under lab conditions that imitate the environment of a fuel cell, the researchers added gold clusters to the platinum electrocatalyst, which kept it intact during an accelerated stability test. This test is conducted under conditions similar to those encountered in stop-and-go driving in an electric car. The research is reported in the January 12, 2007, edition of the journal Science.

Brookhaven's Chemistry Department researchers Junliang Zhang, Kotaro Sasaki, and Radoslav Adzic, along with Eli Sutter from Brookhaven's Center for Functional Nanomaterials, authored the research paper. "Fuel cells are expected to become a major source of clean energy, with particularly important applications in transportation," said coauthor Radoslav Adzic. "Despite many advances, however, existing fuel-cell technology still has drawbacks, including loss of platinum cathode electrocatalysts, which can be as much as 45 percent over five days, as shown in our accelerated stability test under potential cycling conditions. Using a new technique that we developed to deposit gold atoms on platinum, our team was able to show promise in helping to resolve this problem. The next step is to duplicate results in real fuel cells."

A hydrogen-oxygen fuel cell converts hydrogen and oxygen into water and, as part of the process, produces electricity. Platinum electrocatalysts speed up oxidation and reduction reactions. Hydrogen is oxidized when electrons are released and hydrogen ions are formed; the released electrons supply current for an electric motor. Oxygen is reduced by gaining electrons, and in reaction with hydrogen ions, water, the only byproduct of a fuel cell reaction, is produced.

In the unique method developed at Brookhaven, the researchers displaced a single layer of copper with gold on carbon-supported platinum nanoparticles. After being subjected to several sweeps of 1.2 volts, the gold monolayer transformed into three-dimensional clusters. Using x-rays as probes at Brookhaven's National Synchrotron Light Source, a scanning transmission microscope at Brookhaven's Center for Functional Nanomaterials, and electrochemical techniques in the laboratory, the scientists were able to verify the reduced oxidation of platinum and to determine the structure of the resulting platinum electrocatalyst with gold clusters, which helped them to gain an understanding of the effects of the gold clusters.

In the Brookhaven experiment, the platinum electrocatalyst remained stable with potential cycling between 0.6 and 1.1 volts in over 30,000 oxidation-reduction cycles, imitating the conditions of stop-and-go driving. "The gold clusters protected the platinum from being oxidized," Adzic said. "Our team's research raises promising possibilities for synthesizing improved platinum-based catalysts and for stabilizing platinum and platinum-group metals under cycling oxidation/reduction conditions."

Source: Brookhaven National Laboratory

Explore further: Novel NIST process is a low-cost route to ultrathin platinum films

Related Stories

Opposites Attract and Inspire Electrocatalyst

May 24, 2010

(PhysOrg.com) -- Tiny gold particles will surround themselves with even smaller platinum bits, creating a complex structure that could turn a common preservative, formic acid, into electricity in a fuel cell, according to ...

Student creates powerful catalyst from potassium

April 22, 2015

Of what use is a newborn baby? This rhetorical question, variously attributed to Benjamin Franklin, Michael Faraday and Thomas Edison, is meant to suggest that a novel discovery or invention whose ultimate utility is not ...

Recommended for you

Quantum matter stuck in unrest

July 31, 2015

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.