Scientists Manipulate Atoms on a Rough 3-D Surface

January 25, 2007

Ohio University nanoscientists have used a scanning tunneling microscope (STM) to manipulate individual atoms on a rough terrain. It is the first atom manipulation of its kind done on a three-dimensional surface.

Only a select group of scientists have manipulated individual atoms because the procedure requires atomic scale precision and control. Even greater precision and accuracy is required for atom manipulation on rough surfaces.

A movie of the atom extraction can be viewed online.

"This technique is very useful to produce single atoms for atomic constructions. It also helps us understand one of the most fundamental subjects, interaction between the matters,” said Saw-Wai Hla, the lead researcher and an associate professor of physics and astronomy at Ohio University. The research was published in a recent issue of Physical Review Letters.

To perform the manipulation, the researchers coat a custom-built, low-temperature STM tip with silver atoms. Some of the silver atoms are deposited by gently touching the tip to the silver surface. A three-dimensional image of the silver cluster is taken to determine ideal target zones for atom removal. Once ideal areas have been located, the silver-coated tip approaches the silver cluster — but they never make contact. Approaching the tip within less than a tenth of a nanometer of the cluster loosens the top atom. Moving the tip laterally across the surface drags the loosened atom and results in extraction.

The STM tip does not have to come in contact with the cluster because close proximity of the atoms causes reduced binding. This concept is based on theory proposed by University of Central Florida researchers led by Professor Talat Rahman.


Source: by by LIZ LEITCH, Ohio University

Explore further: Short wavelength plasmons observed in nanotubes

Related Stories

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

The incredible shrinking ESR machine

July 15, 2015

Researchers at the National Institute of Standards and Technology (NIST) have come up with a way to shrink a research instrument generally associated with large machines that make bulk measurements of samples down to a literally ...

Trapping vortices key to high-current superconductors

July 2, 2015

If we are to see the promised benefits of high-temperature superconductors, such as low-loss motors and generators or maglev trains, we will need superconductors that can carry very large currents.

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.