Scientists develop atom-scale switch

January 18, 2007

U.S. Energy Department scientists performing basic research have discovered a carbon nanotube-based system that functions as an atom-scale switch.

The researchers at the Oak Ridge National Laboratory say their approach is to perform first-principles calculations on positioning a molecule inside a carbon nanotube to affect the electronic current flowing across it.

The result is an electrical gate at the molecular level: In one position, the molecular gate is open, allowing current to pass, while in another position the gate is closed, blocking the current. In a silicon chip, the gate is a silicon oxide barrier within the structure of the chip.

In the ORNL model, the gate is a short molecule -- encapsulated inside the carbon nanotube that is about one nanometer in size, or three orders of magnitude smaller than a silicon chip.

The research is to appear in the Feb 2 issue of the journal Physical Review Letters.

Copyright 2007 by United Press International

Explore further: Imec demonstrates gate-all-around MOSFETs with lateral silicon nanowires at scaled dimensions

Related Stories

Probing quantum phenomena in tiny transistors

July 7, 2016

Nearly 1,000 times thinner than a human hair, nanowires can only be understood with quantum mechanics. Using quantum models, physicists from Michigan Technological University have figured out what drives the efficiency of ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.