What Will GLAST Tell Us?

January 23, 2007
What Will GLAST Tell Us?
A simulated image of gamma-ray sources from dark matter annihilations in a model galaxy. Image courtesy of James E. Taylor and Arif Babul

The identity of dark matter—the mysterious stuff that makes up a quarter of the universe—continues to elude scientists, even decades after they first inferred its existence. The leading candidate that might explain the fundamental make-up of dark matter is a hypothetical particle called the weakly interacting massive particle (WIMP). Soon, with the Gamma-Ray Large Area Telescope (GLAST) built in part at SLAC and scheduled for launch in August of 2007, scientists may finally find clear evidence that dark matter is indeed made of WIMPs.

Gamma-rays—the most energetic form of light—originate from a multitude of mysterious sources, like black holes or exploding stars. But current theory suggests they can also come from WIMPs. Scientists believe WIMPs can interact with themselves, annihilating each other and releasing a flurry of secondary particles as well as gamma-rays. Using GLAST, scientists hope to find these high-energy signatures of dark matter in our galaxy. If they succeed, this discovery would help solve one of astronomy's grandest puzzles.

"With GLAST, we hope to actually see individual dark matter annihilations," said Michael Peskin, professor of theoretical physics at SLAC. Ted Baltz, a Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) researcher who also works on the GLAST project, added, "GLAST has the real possibility of making a fundamental contribution to understanding what galaxies are made of."

Even though it is much more weakly interacting than ordinary matter, dark matter is not spread out evenly through space and should form clumps in galaxies. If dark matter is in fact composed of WIMPS, this clumping would improve the chances of these particles meeting and annihilating, producing steady streams of gamma rays detectable by GLAST.

The trick will be distinguishing gamma rays generated by dark matter events from those generated by numerous other sources in the universe. To differentiate between the two, researchers have established a set of four guidelines. Theory predicts that WIMP annihilations will create gamma rays of particular wavelengths, distinct from those generated by other sources like black holes or exploding stars.

Dark matter annihilations should produce gamma rays exclusively, ruling out interactions that involve other kinds of radiation. These signals should appear to GLAST not as point sources, but as large patches in the sky—some nearly twice as big as the full moon. Finally, these streams of gamma rays would be continuous, a marked difference from the fleeting explosions of gamma-ray bursts that last only a few milliseconds to several minutes. If scientists find a signal with all these characteristics, chances are good that they have found a source of WIMP annihilation.

Along with numerous other dark-matter experiments, such as searches for WIMP collisions in underground detectors and attempts to manufacture WIMPs at the Large Hadron Collider (LHC) at CERN, many scientists believe the existence of WIMPS could be confirmed within the next few years.

"I think there's a lot of hope in this business," Baltz said. "If GLAST doesn't see anything, and the LHC doesn't see anything, a lot of people will be surprised. But, we've been wrong before."

Source: Stanford Linear Accelerator Center, by Marcus Woo

Explore further: Possible Fifth Force Would Make Direct Detection of Dark Matter Unlikely

Related Stories

Excitement Builds as GLAST Readies Its Gamma-ray Vision

May 30, 2008

Scientists around the world are excited about all the things that the Gamma-ray Large Area Space Telescope, or GLAST, is going to uncover after it launches on June 5 from Cape Canaveral Air Force Station, Fla.

NASA's Glast mission one step closer to launch

April 11, 2007

NASA's next major space observatory, the Gamma-ray Large Area Space Telescope (GLAST), is one step closer to unveiling the mysteries of the high-energy universe. Almost all the components have been assembled onto the spacecraft, ...

NASA's GLAST gets shades, blankets for the beach

May 13, 2008

GREENBELT, Md. - NASA's Gamma-ray Large Area Space Telescope, or GLAST, is receiving finishing touches at the Cape Canaveral Air Force Station, near the beaches of eastern central Florida for its launch. The spacecraft is ...

Searching the heavens -- GLAST

May 1, 2008

A new space mission, due to launch this month, is going to shed light on some of the most extreme astrophysical processes in nature - including pulsars, remnants of supernovae, and supermassive black holes. It could even ...

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

Biomedical imaging at one-thousandth the cost

November 23, 2015

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.