World's fastest transistor approaches goal of terahertz device

Dec 11, 2006
Scanning electron microscope images of original base-collector mesa (top) and improved design (bottom). Credit: University of Illinois at Urbana-Champaign

Scientists at the University of Illinois at Urbana-Champaign have again broken their own speed record for the world’s fastest transistor. With a frequency of 845 gigahertz, their latest device is approximately 300 gigahertz faster than transistors built by other research groups, and approaches the goal of a terahertz device.

Made from indium phosphide and indium gallium arsenide, "the new transistor utilizes a pseudomorphic grading of the base and collector regions," said Milton Feng, the Holonyak Chair Professor of Electrical and Computer Engineering at Illinois. "The compositional grading of these components enhances the electron velocity, hence, reduces both current density and charging time."

With their latest device, Feng and his research group have taken the transistor to a new range of high-speed operation, bringing the "Holy Grail" of a terahertz transistor finally within reach. Faster transistors translate into faster computers, more flexible and secure wireless communications systems, and more effective combat systems.

In addition to using pseudomorphic material construction, the researchers also refined their fabrication process to produce tinier transistor components. For example, the transistor’s base is only 12.5 nanometers thick (a nanometer is one billionth of a meter, or about 10,000 times smaller than the width of a human hair).

"By scaling the device vertically, we have reduced the distance electrons have to travel, resulting in an increase in transistor speed," said graduate student William Snodgrass, who will describe the new device at the International Electronics Device Meeting in San Francisco, Dec. 11-13. "Because the size of the collector has also been reduced laterally, the transistor can charge and discharge faster."

Operated at room temperature (25 degrees Celsius), the transistor speed is 765 gigahertz. Chilled to minus 55 degrees Celsius, the speed increases to 845 gigahertz.

Feng, Snodgrass and graduate student Walid Hafez (now at Intel Corp.) fabricated the high-speed device in the university’s Micro and Nanotechnology Laboratory.

In addition to further increasing the transistor speed, Feng wants to reduce the current density even more, which will reduce junction temperature and improve device reliability.

Source: University of Illinois at Urbana-Champaign

Explore further: EU open source software project receives green light

Related Stories

Researchers detect spin precession in silicon nanowires

Jun 24, 2015

Scientists at the U.S. Naval Research Laboratory (NRL) have reported the first observation of spin precession of spin currents flowing in a silicon nanowire (NW) transport channel, and determined spin lifetimes ...

New 2-D material's properties show promise

Jun 23, 2015

One completed a series of theoretical calculations to predict its properties with the help of a massive computing center. The other grew it in bulk before waxing its atom-thin whiskers with the assistance ...

Event displays in particle physics

Jun 05, 2015

Subatomic particles are far too tiny to see, so over the years physicists have devised ingenious ways to detect and visualise them, often forming beautiful patterns and pictures in the process. From early ...

Quantum computer emulated by a classical system

May 27, 2015

(Phys.org)—Quantum computers are inherently different from their classical counterparts because they involve quantum phenomena, such as superposition and entanglement, which do not exist in classical digital ...

Recommended for you

Hewlett-Packard moves forward with plan to split in two

8 hours ago

Hewlett-Packard is moving forward with plans to split into two companies, filing paperwork to create a new entity that will sell commercial technology, while a separate spinoff will sell personal computers and printers.

EU open source software project receives green light

16 hours ago

An open source software project involving the University of Southampton to extend the capacity of computational mathematics and interactive computing environments has received over seven million euros in EU funding.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.