World's fastest transistor approaches goal of terahertz device

December 11, 2006
Scanning electron microscope images of original base-collector mesa (top) and improved design (bottom). Credit: University of Illinois at Urbana-Champaign

Scientists at the University of Illinois at Urbana-Champaign have again broken their own speed record for the world’s fastest transistor. With a frequency of 845 gigahertz, their latest device is approximately 300 gigahertz faster than transistors built by other research groups, and approaches the goal of a terahertz device.

Made from indium phosphide and indium gallium arsenide, "the new transistor utilizes a pseudomorphic grading of the base and collector regions," said Milton Feng, the Holonyak Chair Professor of Electrical and Computer Engineering at Illinois. "The compositional grading of these components enhances the electron velocity, hence, reduces both current density and charging time."

With their latest device, Feng and his research group have taken the transistor to a new range of high-speed operation, bringing the "Holy Grail" of a terahertz transistor finally within reach. Faster transistors translate into faster computers, more flexible and secure wireless communications systems, and more effective combat systems.

In addition to using pseudomorphic material construction, the researchers also refined their fabrication process to produce tinier transistor components. For example, the transistor’s base is only 12.5 nanometers thick (a nanometer is one billionth of a meter, or about 10,000 times smaller than the width of a human hair).

"By scaling the device vertically, we have reduced the distance electrons have to travel, resulting in an increase in transistor speed," said graduate student William Snodgrass, who will describe the new device at the International Electronics Device Meeting in San Francisco, Dec. 11-13. "Because the size of the collector has also been reduced laterally, the transistor can charge and discharge faster."

Operated at room temperature (25 degrees Celsius), the transistor speed is 765 gigahertz. Chilled to minus 55 degrees Celsius, the speed increases to 845 gigahertz.

Feng, Snodgrass and graduate student Walid Hafez (now at Intel Corp.) fabricated the high-speed device in the university’s Micro and Nanotechnology Laboratory.

In addition to further increasing the transistor speed, Feng wants to reduce the current density even more, which will reduce junction temperature and improve device reliability.

Source: University of Illinois at Urbana-Champaign

Explore further: Imaging technique for performance distribution of organic transistor arrays

Related Stories

Microresonators could bring optical sensors, communications

August 12, 2015

Researchers have solved a key obstacle in creating the underlying technology for miniature optical sensors to detect chemicals and biological compounds, high-precision spectroscopy, ultra-stable microwave sources, and optical ...

Recommended for you

How to curb emissions? Put a price on carbon

September 3, 2015

Literally putting a price on carbon pollution and other greenhouse gasses is the best approach for nurturing the rapid growth of renewable energy and reducing emissions.

Customizing 3-D printing

September 3, 2015

The technology behind 3-D printing is growing more and more common, but the ability to create designs for it is not. Any but the simplest designs require expertise with computer-aided design (CAD) applications, and even for ...

Magnetic fields provide a new way to communicate wirelessly

September 1, 2015

Electrical engineers at the University of California, San Diego demonstrated a new wireless communication technique that works by sending magnetic signals through the human body. The new technology could offer a lower power ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.