Weight determination of individual viruses with a miniature ion trap

December 4, 2006

Viruses are the simplest life forms on our planet, consisting of only DNA or RNA and a shell. After the prokaryotes (bacteria and archebacteria), viruses are the second most common type of organism. In our oceans they are the most common life form. In order to gain a better understanding of the structure and characteristics of these genetically varied little organisms, it would be highly useful to be able to determine their masses and how much these vary within a given population.

Researchers in Taiwan have now used very gentle ionization techniques and a miniaturized ion trap of their own devising to accurately analyze the masses of individual, intact viruses.

Previous methods for determining the masses of viruses had a margin of error of ±15%, which made them too inaccurate to ensure the resolution of small differences in mass. A team led by Huan-Cheng Chang has developed a new concept to attain higher precision.

In order to determine their mass, viruses must first be converted to the gas phase, given an electric charge, and accelerated in an electric field. However, this process must leave the viruses intact. The researchers thus chose to use a very gentle method known as LIAD (laser-induced acoustic desorption).

The virus particles are released from the sample by laser-induced sound waves. They are then caught in an “ion trap”. This is an electric field that holds charged particles prisoner by means of its special geometry and alternating voltage. Once trapped, the virus particles are ready for mass determination. Laser light is beamed into the ion trap. If a particle is present, it scatters the light.

The scattered light can be detected through the transparent surfaces of the ion trap. A portion of the light is sent to a CCD camera, which records the flight path of the trapped particle. The rest of the light goes to a measuring device that precisely analyzes the scattering signal. The scattered light is different from the initial light beam because the virus particle in the electric field of the ion trap begins to oscillate. This oscillation depends on the mass (and charge) of the virus.

The team was thus able to determine the masses of three different types of viruses with diameters between 80 and 300 nm—with an astonishingly low margin of error of ±1%. The masses of the viruses can, in combination with other analytical processes, be used to infer how many building blocks are used to make up the shell of the virus or how many copies of the genetic material it contains.

These highly precise measurements were made possible by the special structure of the ion trap; instead of a classic quadrupole ion trap, Chang and co-workers chose to use a cylindrical ion trap (CIT). In this type of trap, the movement of the trapped ions is considerably more complex and not mathematically ascertainable. However, it has the advantage of a much simpler geometry.

The team constructed a CIT with smaller dimensions than usual, optimized the geometry, and exchanged the usual terminal electrodes of the cylinder with transparent, electrically conducting plates. This special construction is what made application of the precise light-scattering technique for the mass determination of a single virus possible.

Citation: Huan-Cheng Chang, Microscopy-Based Mass Measurement of a Single Whole Virus in a Cylindrical Ion Trap, Angewandte Chemie International Edition 2006, 45, No. 48, 8131–8134, doi: 10.1002/anie.200603839

Source: Angewandte Chemie

Explore further: Researchers developing next generation of high power lasers

Related Stories

Quantum computing advance locates neutral atoms

August 12, 2015

For any computer, being able to manipulate information is essential, but for quantum computing, singling out one data location without influencing any of the surrounding locations is difficult. Now, a team of Penn State physicists ...

Old astronomic riddle on the way to be solved

July 15, 2015

Scientists at the University of Basel were able to identify for the first time a molecule responsible for the absorption of starlight in space: the positively charged buckminsterfullerene. Their results have been published ...

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Secrets of a heat-loving microbe unlocked

September 4, 2015

Scientists studying how a heat-loving microbe transfers its DNA from one generation to the next say it could further our understanding of an extraordinary superbug.

Plants also suffer from stress

September 4, 2015

High salt in soil dramatically stresses plant biology and reduces the growth and yield of crops. Now researchers have found specific proteins that allow plants to grow better under salt stress, and may help breed future generations ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.