Better track leads to new particles

December 7, 2006
Better track leads to new particles
A simulated collision in the ATLAS detector. Credit: NWO

In particle accelerators new particles often arise as a result of collisions between elementary particles. However the track left by these particles is often difficult to trace. Dutch researcher Thijs Cornelissen developed an algorithm to reconstruct the particle tracks and that is being used in a European research institute for particle physics. His method provides greater insights into the origin of particles that arise as a result of collisions.

Last year, Cornelissen contributed to the development of the ATLAS detector of the Large Hadron Collider (LHC), the new particle accelerator of the European Organisation for Nuclear Research (CERN) in Geneva. Material is made up of very small particles, which are too small to be seen with a microscope. These particles can, however, be studied using particle accelerators. A particle accelerator accelerates particles up to extremely high energies after which they collide releasing new particles. The particles produced pass through various components of the accelerator and the detector, before the detector makes a reconstruction of their track.

The detector measures the exact positions of a particle that passes through it. Using this collection of points, computer calculations can be performed to determine the track of the particle. The tracks are deflected by the presence of a magnetic field within the detector. This deflection is used to calculate the impulse of the particle.

The particle track is influenced by the material in the detector, such as the copper and aluminium found in the cables and magnets. The particles lose some of their energy when they pass through a layer of material, and this alters the deflection of the track. Multiple scattering of the particles also affects the direction of the track. In his PhD thesis, Cornelissen describes an algorithm that tries to correct for these material effects so as to achieve the best possible resolution on the track construction. This reconstruction is vitally important for determining which particles arose from the collision.

Cornelissen's algorithm has been tested with simulated data and has been applied to real data obtained by prototypes of the detectors that will be used in ATLAS. For example, tracks of cosmic particles can also be accurately detected and reconstructed. That is particularly important for the start of the LHC and the real measurements of the ATLAS experiment, which are planned to take place before the end of 2007.

Source: NWO

Explore further: It's alive, it's alive!

Related Stories

It's alive, it's alive!

July 30, 2015

On June 3, 2015, more than a month before New Horizons, flying faster than speeding bullet, reached its rendezvous with the Pluto system, an astronomer at the Southwest Research Institute who is also a space artist posted ...

Playing 'tag' with pollution lets scientists see who's 'it'

July 29, 2015

Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot—and ...

Pulsar punches hole in stellar disk

July 22, 2015

A fast-moving pulsar appears to have punched a hole in a disk of gas around its companion star and launched a fragment of the disk outward at a speed of about 4 million miles per hour. NASA's Chandra X-ray Observatory is ...

Recommended for you

Quantum matter stuck in unrest

July 31, 2015

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

Robotic insect mimics nature's extreme moves

July 30, 2015

The concept of walking on water might sound supernatural, but in fact it is a quite natural phenomenon. Many small living creatures leverage water's surface tension to maneuver themselves around. One of the most complex maneuvers, ...

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.