Southern Ocean Could Slow Global Warming

December 5, 2006
Southern Ocean Could Slow Global Warming
This image shows the oceans and continents that surround Antarctica. The tip of South America is on the upper left, the tip of Africa is at the upper right and Australia is at the bottom right. The ocean colors indicate temperature, with the darkest blue indicating the coldest water. The black arrows show the direction the Southern Hemisphere westerly winds and the Antarctic Circumpolar Current take as they swirl around the southernmost continent. Copyright 2006 Paul J. Goodman, The University of Arizona

The Southern Ocean may slow the rate of global warming by absorbing significantly more heat and carbon dioxide than previously thought, according to new research.

The Southern Hemisphere westerly winds have moved southward in the last 30 years. A new climate model predicts that as the winds shift south, they can do a better job of transferring heat and carbon dioxide from the surface waters surrounding Antarctica into the deeper, colder waters.

The new finding surprised the scientists, said lead researcher Joellen L. Russell. "We think it will slow global warming. It won't reverse or stop it, but it will slow the rate of increase."

The new model Russell and her colleagues developed provides a realistic simulation of the Southern Hemisphere westerlies and Southern Ocean circulation.

Previous climate models did not have the winds properly located. In simulations of present-day climate, those models distorted the ocean's response to future increases in greenhouse gases.

"Because these winds have moved poleward, the Southern Ocean around Antarctica is likely to take up 20 percent more carbon dioxide than in a model where the winds are poorly located," said Russell, an assistant professor of geosciences at The University of Arizona in Tucson.

“More heat stored in the ocean means less heat stored in the atmosphere. That's also true for carbon dioxide, the major greenhouse gas."

"But there are consequences," Russell said. "This isn't an unqualified good, even if more carbon dioxide and heat goes into the ocean."

As the atmosphere warms, storing more heat in the ocean will cause sea levels to rise even faster as the warmed water expands, she said. Adding more CO2 to the oceans will change their chemistry, making the water more acidic and less habitable for some marine organisms.

Russell and her colleagues conducted the study while she was a researcher at Princeton University and the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory in Princeton, N.J.

Her co-authors on the article, "The Southern Hemisphere Westerlies in a Warming World: Propping open the Door to the Deep Ocean,” are GFDL researchers Keith W. Dixon, Anand Gnanadesikan, Ronald J. Stouffer and J.R. Toggweiler. The article will be published in the December 15 issue of the Journal of Climate.

The researchers characterize the Southern Ocean as "the crossroads of the global ocean's water masses, connecting the Atlantic, Pacific and Indian Oceans as well as connecting the deep ocean to the surface."

The current set of computer models that scientists use to predict future climate differ in the degree to which heat is sequestered by the Southern Ocean. The models vary in how they represent the behavior of the Southern Hemisphere Westerlies and the Antarctic Circumpolar Current, the largest current on the planet.

The team's model does a better job of depicting the location and observed southward shift of the Southern Hemisphere atmospheric winds than do previous global climate circulation models. The new model developed at GFDL shows that the poleward shift of the westerlies intensifies the strength of the winds as they whip past the tip of South America and circumnavigate Antarctica.

"It's like a huge blender," Russell said as she held up a globe and demonstrated how the winds whirl around the southernmost continent. Those winds, she said, propel the Antarctic Circumpolar Current. The current drives the upwelling of cold water from more than two miles deep. The heavy, cold water comes to the surface and then sinks back down, carrying the carbon dioxide and heat with it.

The new model forecasts this shift in the winds will continue into the future as greenhouse gases increase.

Stouffer said, “The poleward intensification of the westerlies will allow the ocean to remove additional heat and anthropogenic carbon dioxide from the atmosphere. Thus, the deep ocean has the potential to slow the atmospheric warming through the increased storage of heat and carbon.”

The team's next step will be figuring out how warming, ice-melt and ongoing shifts in the Southern Hemisphere westerlies will affect the biogeochemistry of the Southern Ocean and the global budgets for heat and carbon dioxide.

Source: University of Arizona

Explore further: How does El Nino warm the entire globe?

Related Stories

How does El Nino warm the entire globe?

October 6, 2015

We regularly hear about how El Niño events raise the temperature across much of the planet, contributing to spikes in global average temperature such as the one witnessed in 1998, with severe bush fires, droughts and floods.

Could 'The Day After Tomorrow' happen?

October 9, 2015

A researcher from the University of Southampton has produced a scientific study of the climate scenario featured in the disaster movie 'The Day After Tomorrow'.

Surface of the oceans affects climate more than thought

September 30, 2015

The oceans seem to produce significantly more isoprene, and consequently affect stronger the climate than previously thought. This emerges from a study by the Institute of Catalysis and Environment in Lyon (IRCELYON, CNRS ...

The gas (and ice) giant Neptune

September 14, 2015

Neptune is the eight planet from our Sun, one of the four gas giants, and one of the four outer planets in our Solar System. Since the "demotion" of Pluto by the IAU to the status of a dwarf planet – and/or Plutoid and ...

Recommended for you

Climate scientist hits out at IPCC projections

October 13, 2015

As a new chairman is appointed to the Intergovernmental Panel on climate Change (IPCC) a University of Manchester climate expert has said headline projections from the organisation about future warming are 'wildly over optimistic.'

'Bridge' fuel may escalate atmospheric greenhouse gas

October 13, 2015

While the U.S. Environmental Protection Agency (EPA) suggests there has been a decline in measurable atmospheric greenhouse gas emissions from fossil fuel use in the U.S. for the past seven years, a Cornell scientist says ...

Study sees powerful winds carving away Antarctic snow

October 13, 2015

A new study has found that powerful winds are removing massive amounts of snow from parts of Antarctica, potentially boosting estimates of how much the continent might contribute to sea level. Up to now, scientists had thought ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.