NASA Mars Orbiter Photographs Spirit and Vikings on the Ground

Dec 05, 2006
NASA Mars Orbiter Photographs Spirit and Vikings on the Ground
This image from the High Resolution Imaging Science Experiment camera on NASA's Mars Reconnaissance Orbtier shows the landing site of the Mars Exploration Rover Spirit. The impact crater in the upper left portion of the image is "Bonneville Crater," which was investigated by Spirit shortly after landing. In the lower right portion of the image is "Husband Hill," a large hill that Spirit climbed and spent much of its now nearly three-year mission. The bright irregularly shaped feature is Spirit's parachute, now lying on the Martian surface. Near the parachute is the cone-shaped back shell, which helped protect Spirit's lander during its seven-month journey to Mars. The back shell appears relatively undamaged by its impact with the Martian surface. Wrinkles and folds in the parachute fabric are clearly visible. Credit: NASA

New images from NASA's Mars Reconnaissance Orbiter show three additional NASA spacecraft that have landed on Mars: the Spirit rover active on the surface since January 2004 and the two Viking landers that successfully reached the surface in 1976.

The orbiter's high-resolution camera took a dramatic photograph of Spirit's twin rover, Opportunity, at the edge of a Martian crater two months ago.

Besides providing new portraits of these robotic emissaries, the images provide scientists valuable high-resolution information about the surrounding terrain at each site. This aids both in interpreting other orbital data and in planning activities for surface missions.

The new images are available online at hirise.lpl.arizona.edu . They are among the earliest from Mars Reconnaissance Orbiter's primary science phase, which began in November.

"We know these sites well at ground level through the eyes of the cameras on Spirit and the Viking landers," said Dr. Alfred McEwen of the University of Arizona, Tucson, principal investigator for the High Resolution Imaging Science Experiment camera on Mars Reconnaissance Orbiter. "Applying that knowledge as we view the new orbital images will help us interpret what we see in orbital images from other parts of Mars never seen from ground level."

The camera's view of Spirit in the midst of the "Columbia Hills" is quickly being put to use by scientists and engineers who plan the rover's daily activities, just as a comparable image taken two months ago of Spirit's twin, Opportunity, has aided that rover's work. A second image of the Opportunity site has now been combined with the first for a stereo view.

The view of Viking Lander 1 from the high-resolution camera on Mars Reconnaissance Orbiter reveals the spacecraft's back shell about 260 meters (850 feet) away and the heat shield nearly four times that distant. The lander returned the first view from the surface of Mars and kept operating for more than six years after its July 20, 1976, landing.

"The biggest surprise is that you can still see what appears to be the parachute after 30 years," said Dr. Tim Parker of NASA's Jet Propulsion Laboratory, Pasadena, Calif., whose calculations helped determine where to point the orbital camera for seeing the Viking landers.

Viking Lander 2, unlike Spirit and Viking Lander 1, had not been detected previously in images from NASA's Mars Global Surveyor. One feature that had been considered a possibility in an earlier image turned out to be the Viking Lander 2's back shell, about 400 meters (a quarter mile) from the lander easily discerned in the image from the newer, higher-resolution camera.

Parker is identifying some individual nicknamed rocks in the Viking-site images that are prominent in famous photographs taken by the landers, such as "Ankylosaurus," a rough rock about a meter (three feet) long near Viking Lander 2, and the larger "Big Joe" near Viking Lander 1.

NASA made imaging of the Viking Lander 2 site an especially high priority for Mars Reconnaissance Orbiter to help in evaluation of candidate landing sites for NASA's Phoenix Mars Lander mission, being prepared for launch next summer. Phoenix will land at a far northern site, and the Viking Lander 2 site, though not as high-latitude as where Phoenix will go, is the most comparable site of any seen from the surface of Mars.

"The Viking Lander 2 site, with its combination of lander-based and orbiter-based imaging, gives us an important anchor for evaluating the ground roughness and boulder densities at sites where we have only orbital imaging," said Dr. Ray Arvidson of Washington University in St. Louis, chair of NASA's Phoenix Landing Site Working Group.

Source: University of Arizona

Explore further: Hubble video shows shock collision inside black hole jet

Related Stories

The pale blue dot and other 'selfies' of Earth

Apr 06, 2015

Twenty-five years ago a set of images were taken that provided a unique view of Earth and helped highlight the fragility of our existence, and the importance of our stewardship.

Why don't we search for different life?

Mar 03, 2015

If we really want to find life on other worlds, why do we keep looking for life based on carbon and water? Why don't we look for the stuff that's really different?

Viking landers did detect organics on Mars

Jan 06, 2011

(PhysOrg.com) -- In 1976 the NASA Viking landers took samples of soil on Mars and tested them for signs of organic carbon. A reinterpretation of the results now suggests the samples did contain organic compounds, ...

Why is everyone vying for a piece of Mars?

Sep 24, 2014

The red planet is about to welcome a new visitor: India's Mars Orbiter Mission (MOM) started orbiting Mars on September 24. But MOM is not the only new kid in town. The American MAVEN explorer arrived at ...

Mars Icebreaker Life mission

May 16, 2013

Missions to Mars have only scratched its surface. To go deeper, scientists are proposing a spacecraft that can drill into the Red Planet to potentially find signs of life.

Curiosity's search for organics

Aug 03, 2012

Soon the rover Curiosity will land on Mars. By design it won't involve life-detection, but it was assembled to look for the carbon-based building blocks of Martian life and to explore the possible habitats ...

Recommended for you

A bubbly cosmic celebration

16 hours ago

In the brightest region of the nebula RCW 34, gas is heated and expands through the surrounding cooler gas. Once the heated hydrogen reaches the borders of the gas cloud, it bursts outwards into the vacuum ...

Image: XMM-Newton self-portraits with planet Earth

16 hours ago

This series of images was taken 15 years ago, a couple of months after the launch of ESA's XMM-Newton space observatory. These unique views, showing parts of the spacecraft main body and solar wings, feature ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.