NASA Mars Orbiter Photographs Spirit and Vikings on the Ground

Dec 05, 2006
NASA Mars Orbiter Photographs Spirit and Vikings on the Ground
This image from the High Resolution Imaging Science Experiment camera on NASA's Mars Reconnaissance Orbtier shows the landing site of the Mars Exploration Rover Spirit. The impact crater in the upper left portion of the image is "Bonneville Crater," which was investigated by Spirit shortly after landing. In the lower right portion of the image is "Husband Hill," a large hill that Spirit climbed and spent much of its now nearly three-year mission. The bright irregularly shaped feature is Spirit's parachute, now lying on the Martian surface. Near the parachute is the cone-shaped back shell, which helped protect Spirit's lander during its seven-month journey to Mars. The back shell appears relatively undamaged by its impact with the Martian surface. Wrinkles and folds in the parachute fabric are clearly visible. Credit: NASA

New images from NASA's Mars Reconnaissance Orbiter show three additional NASA spacecraft that have landed on Mars: the Spirit rover active on the surface since January 2004 and the two Viking landers that successfully reached the surface in 1976.

The orbiter's high-resolution camera took a dramatic photograph of Spirit's twin rover, Opportunity, at the edge of a Martian crater two months ago.

Besides providing new portraits of these robotic emissaries, the images provide scientists valuable high-resolution information about the surrounding terrain at each site. This aids both in interpreting other orbital data and in planning activities for surface missions.

The new images are available online at hirise.lpl.arizona.edu . They are among the earliest from Mars Reconnaissance Orbiter's primary science phase, which began in November.

"We know these sites well at ground level through the eyes of the cameras on Spirit and the Viking landers," said Dr. Alfred McEwen of the University of Arizona, Tucson, principal investigator for the High Resolution Imaging Science Experiment camera on Mars Reconnaissance Orbiter. "Applying that knowledge as we view the new orbital images will help us interpret what we see in orbital images from other parts of Mars never seen from ground level."

The camera's view of Spirit in the midst of the "Columbia Hills" is quickly being put to use by scientists and engineers who plan the rover's daily activities, just as a comparable image taken two months ago of Spirit's twin, Opportunity, has aided that rover's work. A second image of the Opportunity site has now been combined with the first for a stereo view.

The view of Viking Lander 1 from the high-resolution camera on Mars Reconnaissance Orbiter reveals the spacecraft's back shell about 260 meters (850 feet) away and the heat shield nearly four times that distant. The lander returned the first view from the surface of Mars and kept operating for more than six years after its July 20, 1976, landing.

"The biggest surprise is that you can still see what appears to be the parachute after 30 years," said Dr. Tim Parker of NASA's Jet Propulsion Laboratory, Pasadena, Calif., whose calculations helped determine where to point the orbital camera for seeing the Viking landers.

Viking Lander 2, unlike Spirit and Viking Lander 1, had not been detected previously in images from NASA's Mars Global Surveyor. One feature that had been considered a possibility in an earlier image turned out to be the Viking Lander 2's back shell, about 400 meters (a quarter mile) from the lander easily discerned in the image from the newer, higher-resolution camera.

Parker is identifying some individual nicknamed rocks in the Viking-site images that are prominent in famous photographs taken by the landers, such as "Ankylosaurus," a rough rock about a meter (three feet) long near Viking Lander 2, and the larger "Big Joe" near Viking Lander 1.

NASA made imaging of the Viking Lander 2 site an especially high priority for Mars Reconnaissance Orbiter to help in evaluation of candidate landing sites for NASA's Phoenix Mars Lander mission, being prepared for launch next summer. Phoenix will land at a far northern site, and the Viking Lander 2 site, though not as high-latitude as where Phoenix will go, is the most comparable site of any seen from the surface of Mars.

"The Viking Lander 2 site, with its combination of lander-based and orbiter-based imaging, gives us an important anchor for evaluating the ground roughness and boulder densities at sites where we have only orbital imaging," said Dr. Ray Arvidson of Washington University in St. Louis, chair of NASA's Phoenix Landing Site Working Group.

Source: University of Arizona

Explore further: Astronomers predict fireworks from a close encounter of the stellar kind

Related Stories

NASA 'flying saucer' deploys partially on test

Jun 09, 2015

NASA launched a giant balloon Monday carrying a kind of "flying saucer" that will test technologies for landing on Mars, but its outsized parachute only partly deployed.

What is lunar regolith?

May 29, 2015

When you're walking around on soft ground, do you notice how your feet leave impressions? Perhaps you've tracked some of the looser earth in your yard into the house on occasion? If you were to pick up some ...

Recommended for you

Hubble view: Wolf-Rayet stars, intense and short-lived

8 hours ago

This NASA/European Space Agency (ESA) Hubble Space Telescope picture shows a galaxy named SBS 1415+437 (also called SDSS CGB 12067.1), located about 45 million light-years from Earth. SBS 1415+437 is a Wolf-Rayet ...

NASA image: Stellar sparklers that last

10 hours ago

While fireworks only last a short time here on Earth, a bundle of cosmic sparklers in a nearby cluster of stars will be going off for a very long time. NGC 1333 is a star cluster populated with many young ...

Light echo helps researchers map out parts of galaxy

14 hours ago

Thousands of years before humans invented agriculture, a bright burst of X-rays left the dense neutron star Circinus X-1, located in the faint Southern constellation Circinus. A year and a half ago, those ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.