Taking nanolithography beyond semiconductors

December 14, 2006
Taking nanolithography beyond semiconductors
A new technique of chemical patterning developed at Penn State combines conventional lithography with molecular self-assembly for the creation of multifunctional surfaces. In this technique, a robust lithographic resist is patterned to protect chemical functionality in selected areas. In unprotected areas, the chemical functionality is selectively removed so that other chemical functionality can be placed in these regions. The process can be repeated to create multifunctional surfaces. (top left) A lateral-force microscopy (LFM) image contrasting COOH-terminated regions of high friction (light) with CH3-terminated regions (dark). (top right) Field-emission scanning-electron microscope (FESEM) image contrasting the COOH-terminated regions (dark) and CH3-terminated regions (light) (bottom) 3D rendered Field-emission scanning-electron microscope (FESEM) image of a surface patterned with two chemical functionalities. Credit: Penn State

A new process for chemical patterning combines molecular self-assembly with traditional lithography to create multifunctional surfaces in precise patterns at the molecular level. The process allows scientists to create surfaces with varied chemical functionalities and promises to extend lithography to applications beyond traditional semiconductors.

The new technique, which could have a number of practical chemical and biochemical applications, will be described in the 22 December 2006 issue of the journal Advanced Materials by a team led by Paul S. Weiss, distinguished professor of chemistry and physics at Penn State and Mark Horn, associate professor of engineering science and mechanics at Penn State.

Taking nanolithography beyond semiconductors
A new technique of chemical patterning developed at Penn State combines conventional lithography with molecular self-assembly for the creation of multifunctional surfaces. In this technique, a robust lithographic resist is patterned to protect chemical functionality in selected areas. In unprotected areas, the chemical functionality is selectively removed so that other chemical functionality can be placed in these regions. The process can be repeated to create multifunctional surfaces. A schematic of the photolithography-assisted chemical patterning technique, using organic-acid molecules (COOH, red) as the first component of the self-assembled monolayer (SAM) and methyl-group-terminated molecules (CH3, blue) as the second component. After the first SAM is placed, a robust lithographic resist is patterned on top of it. A section of the first component of the SAM is then removed only in the unprotected regions, and the second component of the SAM is deposited in the resulting open areas of the surface. The lithographic resist prevents movement of molecules between the SAM components. Credit: Penn State

The technique uses self-assembled monolayers (SAM) -- chemical films that are one molecule thick -- to build a layer on a surface, followed by the addition of a photolithographic resist that protects the covered parts of the film during subsequent processing. The resist acts as a shield during processing, allowing the cleaning and then self-assembly of different chemical functions on the unprotected parts of the surface.

"Other chemical patterning processes on surfaces suffer from cross-reactions and dissolution at their boundaries," says Weiss. "In our process, the resist provides a barrier and prevents interactions between the molecules already on the surface and the chemistry being done elsewhere. The resist is placed on top of the pattern by standard photolithographic techniques. After the resist is placed, molecules are removed from the exposed areas of the surface. Subsequent placement of a different SAM on the exposed surface creates a pattern of different films, with different functionalities.

Because the resist protects everything it covers, the layer under it does not have to be a single functionality. As a result, a series of pattern/protect/remove/repattern cycles can be applied, allowing complex patterns of functional monolayers on the surface of the substrate. "It allows us to work stepwise across a surface, building complex patterns," says Weiss. "We have demonstrated patterns at the micrometer scale and have the potential to go down to nanometer-scale patterns." While the two processes used by the team -- molecular self-assembly and photolithography -- are individually well-developed, the team's innovation is the successful combination of the techniques to build well-defined surfaces.

Chemical functionalities are distributed across the surface in high-quality layers as a result of the self-assembly process and in high-resolution patterns due to the use of the specialized resists. Different chemical functionalities can be used to detect or to separate a variety of species from a mixture. "The product of the process can be used to create a multiplexed, patterned, capture surface," says Weiss. "We could expose the entire surface to one mixture and capture different parts of the mixture in each region."

Source: Penn State

Explore further: New insight on how crystals form may advance materials, health, basic science research

Related Stories

Neptune's moon of Triton

July 29, 2015

The planets of the outer solar system are known for being strange, as are their many moons. This is especially true of Triton, Neptune's largest moon. In addition to being the seventh-largest moon in the solar system, it ...

Meeting face-to-face with El Capitan

July 23, 2015

Granitic rocks make up much of Earth's continental crust and many of the planet's most iconic landscapes. However, granite's formation is poorly understood because it happens tens of kilometers below the surface. In this ...

Simulations lead to design of near-frictionless material

July 22, 2015

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne ...

The future of data science looks spectacular

July 21, 2015

It wasn't that long ago that we lived in an entirely analogue world. From telephones to televisions and books to binders, digital technology was largely relegated to the laboratory.

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.