Researchers discover hydrogen can form multicenter bonds

Dec 04, 2006

Researchers at the University of California, Santa Barbara have shown that, under the right circumstances, hydrogen can form multicenter bonds, where one hydrogen atom simultaneously bonds to as many as four or six other atoms. Tested for hydrogen in metal oxides, the discovery could have a broad range of technological impact.

The research is available today in the advance online publication of Nature Materials.

Professor Chris G. Van de Walle and Project Scientist Anderson Janotti, both of the Materials Department of the College of Engineering at UC Santa Barbara, have shown that multi-coordinated hydrogen is a likely explanation for electronic conductivity in metal oxides. Metal oxides are widely used in everything from sunscreen to sensors.

Hydrogen, the simplest of the elements (consisting of one proton and one electron) is typically expected to exhibit simple chemistry when forming molecules or solids. Hydrogen atoms almost always form a single bond to just one other atom, leading to a two-center bond with two electrons. Exceptions to the rule are rare; there are only a few cases when hydrogen bonds simultaneously to two other atoms, forming a three-center bond.

Hydrogen can replace an oxygen atom and form a multicenter bond with adjacent metal atoms. For example, in ZnO, hydrogen equally bonds to the four surrounding Zn atoms, becoming fourfold coordinated. These multicenter bonds are highly stable and explain previously puzzling variations in conductivity as a function of temperature and oxygen pressure. The results suggest that hydrogen can be used as a substitutional dopant in oxides, a concept that is counterintuitive and should be of wide interest to researchers.

Source: University of California - Santa Barbara

Explore further: Physicists shatter stubborn mystery of how glass forms

Related Stories

A controversial theory of olfaction deemed implausible

Jun 05, 2015

Humans can discriminate tens of thousands of odors. While we may take our sense of smell for granted, it adds immeasurably to our quality of life: the aroma of freshly brewed coffee; the invigorating smell ...

Recommended for you

Physicists shatter stubborn mystery of how glass forms

13 hours ago

A physicist at the University of Waterloo is among a team of scientists who have described how glasses form at the molecular level and provided a possible solution to a problem that has stumped scientists ...

Building a better semiconductor

Jun 26, 2015

Research led by Michigan State University could someday lead to the development of new and improved semiconductors.

Structural origin of glass transition

Jun 23, 2015

A University of Tokyo research group has demonstrated through computer simulations that the enhancement of fluctuations in a liquid's structure plays an important role as a liquid becomes a solid near the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.