Global warming will reduce ocean productivity, marine life

December 6, 2006
Ocean water

A 10-year, satellite-based analysis has shown for the first time that primary biological productivity in the oceans - the growth of phytoplankton that forms the basis for the rest of the marine food chain - is tightly linked to climate change, and would be reduced by global warming.

The study, published this week in the journal Nature by researchers from Oregon State University and five other institutions, found that on a global scale, a warmer climate could cause a rapid, overall reduction in marine life.

“This clearly showed that overall ocean productivity decreases when the climate warms,” said lead author Michael Behrenfeld, an OSU professor of botany and expert on remote sensing of marine biology.

“There is significant regional variability, with some areas showing enhanced production and some area losses,” Behrenfeld said. “But on a global basis there is an inverse relationship – increased temperatures cause decreased marine phytoplankton production.”

This climate response can be traced to increased stratification in the oceans, the study showed. When the ocean surface warms, it essentially becomes “lighter” than the cold, dense water below, which is loaded with nutrients. This process effectively separates phytoplankton in the surface layer - which need light for photosynthesis - from the nutrients below them, which they also need for growth.

The satellite data used in the study were from NASA’s SeaWiFS satellite, or Sea-viewing Wide-Field-of-view Sensor. Since its launch in 1997, SeaWiFS has measured changes in the color of the ocean - as more and more phytoplankton are added, the color shifts from blue toward green. By studying these color changes from space, scientists can calculate how much phytoplankton pigment is in the water, relate this to photosynthetic rate, and correlate these changes to simultaneous changes in climate.

The first climate-driven change in ocean production measured in this study occurred between 1997 and 1999, when the oceans were recovering from one of the strongest El Nino events on record. With the end of the El Nino, global climate began to cool and there was a surge in ocean phytoplankton productivity that peaked in late 1999.

The second climate event was a long-term warming trend that started in 2000 and continues today. Over this period, the ocean sea surface became overall warmer and more stratified, and phytoplankton productivity went down almost in lockstep at a rate of about 190 million tons of carbon a year. On a regional scale, the decreases in production often exceeded 30 percent.

Despite their microscopic size, ocean phytoplankton are responsible for about half of the photosynthesis on Earth, a process that removes carbon dioxide from the atmosphere and converts it into organic carbon to fuel nearly every ocean ecosystem.

Compared to terrestrial land plants, however, phytoplankton use a very small amount of biomass to convert large amounts of carbon, because they are eaten by predators about as quickly as they grow. The entire global phytoplankton biomass is consumed every two to six days, in contrast to land plants that might have turnover rates of a year to hundreds of years.

“This very fast turnover, along with the fact that phytoplankton are limited to just a thin veneer of the ocean surface where there is enough sunlight to sustain photosynthesis, makes them very responsive to changes in climate,” Behrenfeld said. “This was why we could relate productivity changes to climate variability in only a 10-year record. Such connections would be much harder to detect from space for terrestrial plant biomass.”

Results of the study may provide important insight into how ocean biology might respond to sustained global warming, the researchers said. “A common prediction among global climate models is that warming will cause ocean production to decrease at mid-latitudes and low latitudes, due to intensified stratification,” Behrenfeld said, “This is precisely the response we observed.”

Climate models also predict long term global warming will cause enhanced phytoplankton production near the poles, because of longer growing seasons, and shifts in the organisms dominating different ecosystems across the globe. These predictions have not yet been confirmed by satellite ocean measurements, and detection of them may require a longer record or advances in satellite technology.

Climate not only influences ocean biology, but ocean biology influences climate.

“Rising levels of carbon dioxide in the atmosphere are a key part of global warming,” Behrenfeld said. “This study shows that as the climate warms, phytoplankton production goes down, but this also means that carbon dioxide uptake by ocean plants will decrease. That would allow carbon dioxide to accumulate more rapidly in the atmosphere, making the problem worse.”

Better understanding this “feedback mechanism” which compounds global warming is a top priority for study, the researchers say.

Source: Oregon State University

Explore further: Seven case studies in carbon and climate

Related Stories

Seven case studies in carbon and climate

November 13, 2015

Every part of the mosaic of Earth's surface—ocean and land, Arctic and tropics, forest and grassland—absorbs and releases carbon in a different way. Wild-card events such as massive wildfires and drought complicate the ...

Antarctica's wildlife in a changing climate

October 27, 2015

Despite being one of the coldest, most inhospitable places on Earth, Antarctica hosts a wealth of biodiversity, and its remoteness and extreme climate have lent a certain amount of protection to the many species that call ...

A breathing planet, off balance

November 13, 2015

Earth's oceans and land cover are doing us a favor. As people burn fossil fuels and clear forests, only half of the carbon dioxide released stays in the atmosphere, warming and altering Earth's climate. The other half is ...

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.