Evolution and the workaround

December 10, 2006

Living things are resourceful, which is a comforting thought unless the living thing in question is a pathogen or a cancer cell. Noxious cells excel at developing drug resistance, outwitting immune systems, and evading cellular controls. They even show an unhealthy talent for surviving internal perturbations such as mutations that affect the function of vital genes, and they do this by evolving new mechanisms to perform old tasks. Somehow the bad guys find a workaround.

That observation led Norman Pavelka, Giulia Rancati, and Rong Li, researchers at the Stowers Institute for Medical Research in Kansas City, MO, to step back and consider the basic process by which cells adapt to the loss of seemingly irreplaceable genes. The researchers reasoned that understanding how cells adapt to internal perturbations could offer insight into how pathogens and cancer cells mutate to evade the body’s defenses and resist treatment with drugs.

The Stowers researchers used the benign budding yeast Saccharomyces cerevisiae as their model organism and deleted a key cell division gene called MYO1. Surely, eliminating this important gene would shut down cell division. This seemed to be the case in the beginning, and yet as the MYO1 defective cells were cultured and subjected to consecutive rounds of selection for best growers, the yeast came up with new strategies to carry out division. When the researchers analyzed the genetic content of these evolved strains, they found that those who were best at cell division had accumulated multiple copies of many of their chromosomes.

Intriguingly, cancer cells also accumulate extra chromosomes as they become more aggressive. The theory is that these extra chromosomes provide “backup” copies of important genes, allowing the original copies to mutate in ways that help the cells survive stresses (such as drugs) that are meant to kill them.

The observation that both yeast and cancer cells evolve chromosome duplications to work around lethal stresses suggests that drugs aimed at defeating this process might be particularly effective against pathogens and cancers adept at rapid drug resistance, the researchers say.

To stay alive, you have to be both sturdy and flexible. The Stowers researchers look to these evolved yeast strains for future explanations of how the duplication of genetic information contributes to the robustness and adaptability of all living things.

Source: American Society for Cell Biology

Explore further: Tandem solar cells are more efficient

Related Stories

Tandem solar cells are more efficient

November 23, 2015

Stacking two solar cells one over the other has advantages: Because the energy is "harvested" in two stages, and overall the sunlight can be converted to electricity more efficiently. Empa researchers have come up with a ...

Hydra can modify its genetic program

November 23, 2015

Champion of regeneration, the freshwater polyp Hydra is capable of reforming a complete individual from any fragment of its body. It is even able to remain alive when all its neurons have disappeared. Researcher the University ...

Organic catenane self-assembles in acidic water

November 23, 2015

(Phys.org)—There are many naturally-occurring supermolecular structures. Among them are catenanes. From the Latin for "chain", a catenane is comprised of two interlocked molecules, and have been found in the mitochondrial ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.