Embryonic stem cells do better on bumpy nanoscale mattress

December 13, 2006

Nothing in the cellular world is flat. Even the flattest of basement membranes has topography; bumps, if you like, beneath the cellular mattress.

Unlike the princess kept awake by the pea, human embryonic stem (HES) cells do better when cultured on a substrate deliberately printed with nanoscale grooves and ridges, according to researchers from the University of Wisconsin–Madison.

The researchers used soft lithography to stamp polyurethane substrates with a nano- micron scale topography; a rugged cellular landscape ranging from a few billionths to a few millionths of a meter in altitude.

The HES cells in culture seemed to appreciate the bumps. A line of HES cells grown for five days on the artificial ridges and grooves kept their “stemness,” their self-renewing phenotype, far better than HES cells plated on standard flat culture surfaces, according to Daniel McFarlin, K.J. Finn, and Chris Murphy of the University of Wisconsin’s School of Veterinary Medicine, who teamed with P.F. Nealey of the University’s Department of Chemical Engineering.

Unlike stem cells derived from adult tissues, which have a limited number of cell doublings, embryonic stem cells cultured under the right conditions have the potential to divide indefinitely, without losing their pluripotent properties. But until now, HES cell cultures had a tendency to spontaneously differentiate, that is, to veer off without warning into a developmental pathway. HES cell cultures have to be closely watched to remove any of these spontaneously differentiated colonies.

Researchers have looked at surface chemistry, growth factors, and mechanical forces as factors in runaway stem cell differentiation, but topography is a new dimension for HES, say Murphy and McFarlin, and a highly promising one.

This is the first demonstration that the physical topography, using controlled feature dimensions, of cell culture surfaces influences HES cell differentiation and self-renewal, according to the researchers. For HES cells to realize their potential in clinical medicine, they would have to be cultured in great quantities and with great fidelity to their pluripotent phenotype. Fine-tuning their nano-micro topography could boost the efficiency of HES cell propagation.

Source: American Society for Cell Biology

Explore further: New family of luminescent materials could find broad uses in chemical and biological detectors

Related Stories

New method opens pathway to new drugs and dyes

September 2, 2015

Rice University scientists have developed a practical method to synthesize chemical building blocks widely used in drug discovery research and in the manufacture drugs and dyes.

Team develops targeted drug delivery to lung

September 2, 2015

Researchers from Columbia Engineering and Columbia University Medical Center (CUMC) have developed a new method that can target delivery of very small volumes of drugs into the lung. Their approach, in which micro-liters ...

Recommended for you

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.