Stretch a DNA Loop, Turn Off Proteins

December 5, 2006
Stretch a DNA Loop, Turn Off Proteins
Photo Credit: Mike White, UCSD

It may look like mistletoe wrapped around a flexible candy cane. But this molecular model shows how some proteins form loops in DNA when they chemically attach, or bind, at separate sites to the double-helical molecule that carries life’s genetic blueprint.

Biologists have discovered that the physical manifestation of DNA loops are a consequence of many biochemical processes in the cell, such as the regulation of gene expression. In other words, these loops indicate the presence of enzymes or other proteins that are turned on. Now physicists at the University of California, San Diego have discovered that stretching the DNA molecule can also turn off the proteins known to cause loops in DNA.

“We showed that certain enzymes acting on DNA could be switched off or on simply by applying a small amount of mechanical tension across the DNA molecule,” said Douglas Smith, an assistant professor of physics at UCSD who headed the team that published the discovery in the December issue of the Biophysical Journal.

“We showed this by mechanically manipulating and stretching single DNA molecules. This switching effect could provide a molecular mechanism for cells to be able to sense and respond to mechanical stresses that they may normally experience. Such stresses could be generated internally by the cells themselves, such as when the cell undergoes changes in shape during the cell cycle, or as external stresses from the environment.”

The amount of tension or stretching that needs to be applied to the molecule is extremely small, Smith added, only one pico-Newton, or one-trillionth of the force generated by the weight of an apple.

Other members of the UCSD team were Gregory Gemmen, a physics graduate student, and Rachel Millin, a laboratory assistant. The study was supported by grants from the Burroughs Wellcome Fund, Kinship Foundation and Arnold and Mabel Beckman Foundation.

Source: UCSD

Explore further: Mapping the 3-D structure of DNA

Related Stories

Seeing cancer in three dimensions

November 21, 2011

One of the hallmarks of cancer cells is that certain regions of their DNA tend to get duplicated many times, while others are deleted. Often those genetic alterations help the cells become more malignant — making them ...

New sequencing method uses nanopores to detect DNA damage

June 18, 2012

Scientists worldwide are racing to sequence DNA – decipher genetic blueprints – faster and cheaper than ever by passing strands of the genetic material through molecule-sized pores. Now, University of Utah scientists ...

Research: Hopping DNA supercoils

September 14, 2012

If you take hold of a DNA molecule and twist it, this creates 'supercoils', which are a bit like those annoying loops and twists you get in earphone cables. Research carried out by TU Delft, The Netherlands, has found that ...

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

Four pre-Inca tombs found in Peru's Lima

November 27, 2015

Archaeologists in Peru have found four tombs that are more than 1,000 years old in a pyramid-shaped cemetery that now sits in the middle of a residential neighborhood in Lima, experts said.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.