Finding an answer to Darwin's Dilemma

December 8, 2006

The sudden appearance of large animal fossils more than 500 million years ago – a problem that perplexed even Charles Darwin and is commonly known as "Darwin’s Dilemma" – may be due to a huge increase of oxygen in the world’s oceans, says Queen’s paleontologist Guy Narbonne, an expert in the early evolution of animals and their ecosystems.

In 2002, Dr. Narbonne and his research team found the world’s oldest complex life forms between layers of sandstone on the southeastern coast of Newfoundland. This pushed back the age of Earth’s earliest known complex life to more than 575 million years ago, soon after the melting of the massive "snowball" glaciers. New findings reported today shed light on why, after three billion years of mostly single-celled evolution, these large animals suddenly appeared in the fossil record.

In a paper published on-line in Science Express, Dr. Narbonne’s team argues that a huge increase in oxygen following the Gaskiers Glaciation 580 million years ago corresponds with the first appearance of large animal fossils on the Avalon Peninsula in Newfoundland.

Now for the first time, geochemical studies have determined the oxygen levels in the world’s oceans at the time these sediments accumulated in Avalon. "Our studies show that the oldest sediments on the Avalon Peninsula, which completely lack animal fossils, were deposited during a time when there was little or no free oxygen in the world’s oceans," says Dr. Narbonne. "Immediately after this ice age there is evidence for a huge increase in atmospheric oxygen to at least 15 per cent of modern levels, and these sediments also contain evidence of the oldest
large animal fossils."

Also on the research team are Don Canfield (University of Southern Denmark) and Simon Poulton (Newcastle University, U.K.). Geochemical studies by Drs. Canfield and Poulton included measurements of iron speciation and sulphur isotopes to determine the oxygen levels in the world’s oceans at the time these sediments accumulated in Avalon.

The close connection between the first appearance of oxygenated conditions in the world’s oceans and the first appearance of large animal fossils confirms the importance of oxygen as a trigger for the early evolution of animals, the researchers say. They hypothesize that melting glaciers increased the amount of nutrients in the ocean and led to a proliferation of single-celled organisms that liberated oxygen through photosynthesis. This began an evolutionary radiation that led to complex communities of filter-feeding animals, then mobile bilateral animals, and ultimately to the Cambrian "explosion" of skeletal animals 542 million years ago.

Source: Queen's University

Explore further: Small oxygen jump helped enable early animals take first breaths

Related Stories

Changing the way we think about urban infrastructure

July 22, 2015

In the early morning of Sept. 8, 2014, rain began to fall across the Phoenix metro area. It showed no signs of stopping during the morning commute, and soon lakes were forming on streets and freeways. Drivers scrambled from ...

Reducing agriculture's greenhouse gas emissions

June 23, 2015

The overwhelming scientific consensus is that gases produced by human activity are affecting the global climate. But even if you don't believe the current warming of the global climate is caused by humans, it's only common ...

Recommended for you

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.