Researchers closer to mastering the 'spookiness' of quantum mechanics

December 15, 2006
Researchers closer to mastering the 'spookiness' of quantum mechanics
One of the most famous code-breakers is the Colossus – used by the British during World War Two to break German signals intelligence. Credit: TopFoto/HIP.

Oxford theorists and their Cambridge collaborator have moved a step closer to creating a machine that would fully harness the deepest laws of physics, quantum mechanics. The machine, called a quantum computer, would have a range of potential uses – including code breaking. It could exactly simulate the behaviour of matter at the atomic scale, providing new insights to chemists and biologists.

Quantum dots – tiny nuggets of one material embedded inside another – could be the ideal building blocks for a quantum computer. However, in order to build such a device, it is necessary to create ‘entanglement’ between different dots, a phenomenon labelled ‘spooky’ by Einstein and the essential resource that would give a quantum computer its power.

In Physical Review Letters, Oxford student Avinash Kolli and his coauthors suggest a new way to create entanglement, by identifying two different stable states of a quantum dot (call them ‘A’ and ‘B’) and then targeting two such dots simultaneously with a laser.

The team discovered that, by watching the light emitted back from the dots, they would learn exactly one piece of information – namely, whether the two dots are in the same state as one another (AA or BB) or different states (AB or BA).

Crucially, this is the only piece of information that would come back. If the two dots are in different states, and if there really is no further information, then nature itself has absolutely no evidence indicating which is A and which is B. This would mean that the actual state of the two dots would be both AB and BA at the same time.

This strange state is a so-called quantum superposition. It is also an entanglement between the dots – the maximum possible degree of entanglement in fact.

Avinash Kolli said: ‘So, simply by illuminating the two dots with a laser and watching the light they emit, entanglement can be created – the elusive resource that will make quantum computation possible.’

A lot of work still needs to be done to flesh out this idea into a full blueprint for a quantum dot computer, but the predictions are testable with existing laboratory equipment. The team is now looking for experimentalists to collaborate on testing this proposal.

Source: University of Oxford

Explore further: Controlling interactions between distant qubits

Related Stories

Controlling interactions between distant qubits

July 23, 2015

A big part of the burgeoning science of quantum computation is reliably storing and processing information in the form of quantum bits, or qubits. One of the obstacles to this goal is the difficulty of preserving the fragile ...

Producing spin-entangled electrons

July 1, 2015

A team from the RIKEN Center for Emergent Matter Science, along with collaborators from several Japanese institutions, have successfully produced pairs of spin-entangled electrons and demonstrated, for the first time, that ...

JQI researchers create entangled photons from quantum dots

November 18, 2009

To exploit the quantum world to the fullest, a key commodity is entanglement—the spooky, distance-defying link that can form between objects such as atoms even when they are completely shielded from one another. Now, physicists ...

Recommended for you

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.