Chemists shed light on solar energy storage

December 8, 2006

Chemistry's role in bridging the gap between solar energy's limited present use and enormous future potential was the topic of a recent article by MIT Professor Daniel G. Nocera and a colleague.

In 2001, approximately 86 percent of the world's energy was obtained from fossil fuels. While fuel reserves are sufficient to support an energy demand that is expected to triple by 2100, the more immediate problem lies in stabilizing excess atmospheric carbon dioxide, a key contributor to global warming, by adopting more carbon neutral power.

The sun's vast energy could be an ideal power source. More energy from sunlight strikes the Earth in one hour than is consumed by the planet in one year. Yet in 2001 solar energy accounted for less than 0.1 percent of total electricity.

The major hurdle to overcome is developing a cost-effective method of storage. "We need energy when the sun doesn't shine," said Nocera, the W.M. Keck Professor of Energy and professor of chemistry.

Nocera and Nathan S. Lewis of Caltech suggest that we borrow from nature and store solar energy in the form of chemical bonds, as plants do in photosynthesis. The mechanism would involve splitting water to generate oxygen and storable fuels such as methane or other hydrocarbons.

In the October 24 issue of the Proceedings of the National Academy of Sciences, the two propose several possible reactions. They note, however, that advances in chemistry such as the development of suitable catalysts for water-splitting are crucial for solar energy to reach its full potential.

Source: MIT

Explore further: Physicists close in on world's most sensitive resonators

Related Stories

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

States can lower electric bills with clean power plan

July 28, 2015

The U.S. electric system faces an array of challenges. Sluggish demand growth and the rise of solar power challenge the ability of utilities to recover their costs. The digital economy requires reliable power quality, and ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.