Acoustic noise contains valuable geophysical information

December 7, 2006

The proper processing of acoustic noise can provide a wealth of information. Geophysicists for example have used seismic background noise measurements to reconstruct the crustal structure under Southern California. The advantage of using existing acoustic noise is that signals only need to be recorded and not produced.

Researchers at TU Delft and the Colorado School of Mines have generalised the underlying theory and found that acoustic noise can be used for a much wider scale of physical applications than was previously thought possible. The researchers will publish their findings in Physical Review Letters on 8 December 2006.

As acoustic noise travels through a medium, such as the earth's crust, it compiles information. In recent years it was discovered that only a few simple processes (cross-correlation) were needed to extract a meaningful signal from acoustic noise. Geophysicists Kees Wapenaar and Evert Slob of TU Delft, and Roel Snieder of the Colorado School of Mines, have now developed a unified theory that extends the extraction of impulse responses from background noise for more general situations.

This theory includes electromagnetic noise in conducting media, acoustic noise in flowing and viscous media, and even diffusive transport phenomena. Moreover, the theory predicts that coupled processes, such as seismo-electric effect and the associated electrokinetic reflections, can also be retrieved from the background noise measurements.

It appears that background noise contains more information than one could possibly dream of several years ago. The theory can be used for 'remote sensing without a source' for a wide range of physical applications that include the determination of parameters of flowing media, viscous media, as well as the electrokinetic coupling parameters of porous reservoir rock. In partnership with Shell, the researchers have since created seismic reflection data from background noise that was recorded in a desert in the Middle East. Moreover, they expect their research methods to be applied in, for example, the LOFAR-project.

Source: Delft University of Technology

Explore further: New method provides direct SI traceability for sound pressure

Related Stories

Turning the tide for great white sharks

October 29, 2014

Spending up to 13 hours a day traversing shark-infested waters may be far from your notion of an ideal career. Not so for UConn alum Chris Perkins '12 (CLAS), co-founder and director of research for nonprofit Shark Bay Research ...

Scientific instruments of Rosetta's Philae lander

September 23, 2014

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make the long journey ...

Natural soundscapes may become 'digital fossils' of the future

September 11, 2014

Sounds are integral to Henry David Thoreau's "Walden," the book about two years he spent living in a cabin in the woods near Walden Pond in Massachusetts in 1846-47 - the wind blowing through the rushes, the rumbling of the ...

Recommended for you

Quantum matter stuck in unrest

July 31, 2015

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.