Spiders’ unspun silk flows easier the faster it is sheared

November 1, 2006
Nephila Senegalensis (Golden orb weaving spider).Credit: Oxford Silk Group
Nephila Senegalensis (Golden orb weaving spider).Credit: Oxford Silk Group

Oxford researchers have discovered that spiders and silkworms spin their fibres using methods that are not all that different from commercial spinning.

Professor Fritz Vollrath and colleagues, in the Silk Research Group at the Department of Zoology, have been able to demonstrate that the spinning ‘dope’ or unspun silk behaves just like a traditional, commercial semi-crystalline polymer, as published today in Nature Materials. This discovery has important implications for industry in their attempt to spin artificial silk threads from protein feed-stocks.

The scientists took dope from the glands of spiders and silkworms, and subjected these precursor silks to shear forces similar to those they would encounter in the animals' spinning ducts. Surprisingly, both pre-silks behaved identically under shear, and both flowed easier the faster they were sheared. This is a phenomenon called ‘shear thinning’ and was first described in the 1920’s for molten plastics.

The observation that both silks – having originated separately and evolved over hundreds of millions of years of independent evolution - show identical shear thinning behaviour suggests the key importance of this flow -response for spinning in nature. Silks are spun with water as a solvent, as well as ambient pressures and temperatures, yet they are fibres with material properties that can put top commercial fibres to shame.

Professor Fritz Vollrath said: ‘Copying the spider's trick of making the silk proteins, and spinning them into these tough fibres has been a dream for a long time. The discovery that the spinning process relies on well understood flow physics is a further step towards realising this dream.’

Researchers from the Oxford Silk Group have previously been able to show that nature has evolved some clever tricks to facilitate the mechanics of the spider’s extrusion system.

Lead author Chris Holland, from the Oxford Silk Group, said:’ Using techniques originally developed for the physical sciences and applying them to study nature’s way of creating these high performance materials opens new doors into understanding not only how silks may have evolved, but also how we may take inspiration from them to improve our own materials‘.

Source: University of Oxford

Explore further: Paralysis promises smart silk technology

Related Stories

Paralysis promises smart silk technology

September 19, 2013

(Phys.org) —Oxford University researchers have harnessed the natural defence mechanism of silkworms, which causes paralysis, in what is a major step towards the large-scale production of silks with tailor-made properties.

Stretchy spider silks can be springs or rubber

May 31, 2008

It’s stronger than steel and nylon, and more extensible than Kevlar. So what is this super-tough material? Spider silk; and learning how to spin it is one of the materials industries’ Holy Grails. John Gosline has been ...

Power thrust for spider silk

April 24, 2009

(PhysOrg.com) -- Spiderman would definitely have an easier time of things with this spider silk - for example, if he had to stop a getaway car moving off at 100 kilometres per hour. A five-millimetre-thick thread would do ...

Reeling in a wild silk harvest

May 17, 2011

(PhysOrg.com) -- A new way of treating wild silkmoth cocoons could see new silk industries springing up wherever wild silk is found in Africa and South America, as well as silk?s Asian heartland.

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.