Quantized heat conduction by photons observed

Nov 09, 2006

In a recent experiment, published in Nature on November 9, Dr Matthias Meschke and professor Jukka Pekola from Helsinki University of Technology (Finland), together with Dr Wiebke Guichard from French CNRS, investigated heat exchange between two small pieces of normal metal, connected to each other only via superconducting leads. The results demonstrate that at very low temperatures heat is transferred by electromagnetic radiation.

The researchers are interested in how heat is transported in nano- and micrometer sized devices on an ordinary silicon chip at only 0.1 degrees above absolute zero.

Generally, even experts consider that superconductors are ideal insulators as regards to usual heat conduction. These new experimental results demonstrate that at very low temperatures heat is transferred by electromagnetic radiation, much in analogy to how light is propagated, along the superconductors, and furthermore these observations show that the heat transfer rate cannot have an arbitrary value: it is limited by what is called a quantum of thermal conductance. As is often the case, this observation contradicts our experiences in daily life. Certainly, one would not see this effect for instance while cooking an egg; it is just another example of how physical laws are changing when quantum mechanics comes into play.

These experiments are quite demanding, as they have to measure the temperature of an extremely tiny piece of a metal. Any usual thermometer would not do it, as it is simply far too big. Again, only the quantum mechanics can provide a solution: nano-sized (about 100 nm in cross-section) probes make use of the quantum mechanical effect of tunneling, that is penetration of particles through a classically forbidden area. Electrical current due to tunneling probes the energy distribution, and thus temperature, of the electrons in the metal. The experiment may have seemed too easy, unless, in order to distinguish the signal from the background, the researchers had to install an “in-situ” switch into the superconducting line: this allowed them to alternatively either pass or reject the heat by electromagnetic radiation through it.

The observation demonstrates a very basic phenomenon, which has no immediate consequences for new products or applications. Yet the observation helps us to understand the fundamental transport mechanisms in nanoscale devices. This effect has implications for, e.g., performance and design of ultra-sensitive radiation detectors in astronomy, whose operation at very low temperature is largely dependent on weak thermal coupling between the device and its environment.

Citation: Matthias Meschke, Wiebke Guichard and Jukka P. Pekola, Single-mode heat conduction by photons. Nature November 9th, 2006.

Source: Academy of Finland

Explore further: Scientists tune X-rays with tiny mirrors

Related Stories

About time: New record for atomic clock accuracy

Apr 21, 2015

In another advance at the far frontiers of timekeeping by National Institute of Standards and Technology researchers, the latest modification of a record-setting strontium atomic clock has achieved precision ...

Video: How do black holes evaporate?

Apr 14, 2015

Nothing lasts forever, not even black holes. According to Stephen Hawking, black holes will evaporate over vast periods of time. But how, exactly, does this happen?

Getting a critical edge on plutonium identification

Mar 24, 2015

A collaboration between NIST scientists and colleagues at Los Alamos National Laboratory (LANL) has resulted in a new kind of sensor that can be used to investigate the telltale isotopic composition of plutonium ...

Chameleon reorganizes its nanocrystals to change colors

Mar 10, 2015

Many chameleons have the remarkable ability to exhibit complex and rapid color changes during social interactions. A collaboration of scientists within the Sections of Biology and Physics of the Faculty of ...

Recommended for you

Bringing high-energy particle detection in from the cold

May 05, 2015

Radiation detectors, which monitor high-energy particles such as those produced by nuclear decay and cosmic radiation, are being used increasingly in medical imaging, petroleum well logging, astronomy and ...

Artificial muscles created from gold-plated onion cells

May 05, 2015

Just one well-placed slice into a particularly pungent onion can send even the most seasoned chef running for a box of tissues. Now, this humble root vegetable is proving its strength outside the culinary ...

Image: Into the depths of the electromagnetic spectrum

May 05, 2015

It can be difficult in our everyday lives to appreciate the extraordinary range of wavelengths in the electromagnetic spectrum. Electromagnetic radiation—from radio waves to visible light to x-rays—travels ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.