Quantized heat conduction by photons observed

November 9, 2006

In a recent experiment, published in Nature on November 9, Dr Matthias Meschke and professor Jukka Pekola from Helsinki University of Technology (Finland), together with Dr Wiebke Guichard from French CNRS, investigated heat exchange between two small pieces of normal metal, connected to each other only via superconducting leads. The results demonstrate that at very low temperatures heat is transferred by electromagnetic radiation.

The researchers are interested in how heat is transported in nano- and micrometer sized devices on an ordinary silicon chip at only 0.1 degrees above absolute zero.

Generally, even experts consider that superconductors are ideal insulators as regards to usual heat conduction. These new experimental results demonstrate that at very low temperatures heat is transferred by electromagnetic radiation, much in analogy to how light is propagated, along the superconductors, and furthermore these observations show that the heat transfer rate cannot have an arbitrary value: it is limited by what is called a quantum of thermal conductance. As is often the case, this observation contradicts our experiences in daily life. Certainly, one would not see this effect for instance while cooking an egg; it is just another example of how physical laws are changing when quantum mechanics comes into play.

These experiments are quite demanding, as they have to measure the temperature of an extremely tiny piece of a metal. Any usual thermometer would not do it, as it is simply far too big. Again, only the quantum mechanics can provide a solution: nano-sized (about 100 nm in cross-section) probes make use of the quantum mechanical effect of tunneling, that is penetration of particles through a classically forbidden area. Electrical current due to tunneling probes the energy distribution, and thus temperature, of the electrons in the metal. The experiment may have seemed too easy, unless, in order to distinguish the signal from the background, the researchers had to install an “in-situ” switch into the superconducting line: this allowed them to alternatively either pass or reject the heat by electromagnetic radiation through it.

The observation demonstrates a very basic phenomenon, which has no immediate consequences for new products or applications. Yet the observation helps us to understand the fundamental transport mechanisms in nanoscale devices. This effect has implications for, e.g., performance and design of ultra-sensitive radiation detectors in astronomy, whose operation at very low temperature is largely dependent on weak thermal coupling between the device and its environment.

Citation: Matthias Meschke, Wiebke Guichard and Jukka P. Pekola, Single-mode heat conduction by photons. Nature November 9th, 2006.

Source: Academy of Finland

Explore further: What is the black hole information paradox?

Related Stories

What is the black hole information paradox?

October 29, 2015

In my day, things were simple. Robot dogs had wheels and laser noses. School was uphill both ways. Unwanted children removed themselves from lawns, and we didn't need those horrible electrified tentacle arms. The cut of my ...

New route for switching magnets using light

September 16, 2015

An international team led by Radboud University physicists has discovered that reversing the poles of magnets must be possible without a heating or a magnetic field.. A strong pulse of light can have a direct effect on the ...

Powering lasers through heat

November 13, 2012

In micro electronics heat often causes problems and engineers have to put a lot of technical effort into cooling, for example micro chips, to dissipate heat that is generated during operation. Austrian physicists have now ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.