Physicists study remote quantum networks

Nov 01, 2006

U.S. physicists say the operations of two remote quantum systems can be synchronized so changes in one system are conditional on what occurs in the other.

The research team led by Jeff Kimble of the California Institute of Technology says the synchronization provides a level of real-time control that hasn't previously been achieved.

Quantum networking plays a key role in a series of proposed quantum communication and information schemes that hold promise for secure information exchange, as well as the ability to solve certain tasks faster than any classical computer.

A practical quantum network requires synchronized operations to be performed on states stored in separated nodes. The authors address the specific task of producing a pair of identical photons from two quantum nodes. They make one node ready for emitting a single photon, but, before actually releasing the particle, wait for the other node to be ready.

That method, the researchers said, significantly increases the probability that two photons are fired simultaneously, when compared with a situation without such conditional control.

The physicists say they believe their technique could have important implications for the development of quantum networks.

The research appears in the journal Nature Physics.

Copyright 2006 by United Press International

Explore further: Used MRI magnets get a second chance at life in high-energy physics experiments

Related Stories

A quantum logic gate between light and matter

Apr 10, 2014

Scientists at Max Planck Institute of Quantum Optics, Garching, Germany, successfully process quantum information with a system comprising an optical photon and a trapped atom.

Recommended for you

SLAC gears up for dark matter hunt with LUX-ZEPLIN

May 21, 2015

Researchers have come a step closer to building one of the world's best dark matter detectors: The U.S. Department of Energy (DOE) recently signed off on the conceptual design of the proposed LUX-ZEPLIN (LZ) ...

First images of LHC collisions at 13 TeV

May 21, 2015

Last night, protons collided in the Large Hadron Collider (LHC) at the record-breaking energy of 13 TeV for the first time. These test collisions were to set up systems that protect the machine and detectors ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.