Physicists study remote quantum networks

November 1, 2006

U.S. physicists say the operations of two remote quantum systems can be synchronized so changes in one system are conditional on what occurs in the other.

The research team led by Jeff Kimble of the California Institute of Technology says the synchronization provides a level of real-time control that hasn't previously been achieved.

Quantum networking plays a key role in a series of proposed quantum communication and information schemes that hold promise for secure information exchange, as well as the ability to solve certain tasks faster than any classical computer.

A practical quantum network requires synchronized operations to be performed on states stored in separated nodes. The authors address the specific task of producing a pair of identical photons from two quantum nodes. They make one node ready for emitting a single photon, but, before actually releasing the particle, wait for the other node to be ready.

That method, the researchers said, significantly increases the probability that two photons are fired simultaneously, when compared with a situation without such conditional control.

The physicists say they believe their technique could have important implications for the development of quantum networks.

The research appears in the journal Nature Physics.

Copyright 2006 by United Press International

Explore further: Metal in chains

Related Stories

Metal in chains

September 13, 2016

The electronic energy states allowed by quantum mechanics determine whether a solid is an insulator or whether it conducts electric current as a metal. Researchers at ETH have now theoretically predicted a novel material ...

Segment of a 'Quantum Repeater' Demonstrated

April 9, 2007

Physicists at the California Institute of Technology have succeeded for the first time in the distribution of "entanglement" in a way that could lead to long-distance quantum communications, scalable quantum networks, and ...

Recommended for you

Shocks in the early universe could be detectable today

October 27, 2016

(—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...

Bubble nucleus discovered

October 27, 2016

Research conducted at the National Superconducting Cyclotron Laboratory at Michigan State University has shed new light on the structure of the nucleus, that tiny congregation of protons and neutrons found at the core of ...

Neutrons prove the existence of 'spiral spin-liquid'

October 27, 2016

Magnetic moments ("spins") in magnetic solids are capable of forming the most diverse structures. Some of them are not only of interest from a scientific point of view, but also from a technical standpoint: processors and ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.