Ocean study predicts the collapse of all seafood fisheries by 2050

Nov 03, 2006
Ocean water

All species of wild seafood will collapse within 50 years, according to a new study by an international team of ecologists and economists. Writing in the Nov. 3 issue of the journal Science, the researchers conclude that the loss of marine biodiversity worldwide is profoundly reducing the ocean's ability to produce seafood, resist diseases, filter pollutants and rebound from stresses, such as climate change and overfishing.

"Unless we fundamentally change the way we manage all the ocean species together as working ecosystems, then this century is the last century of wild seafood," said study co-author Stephen Palumbi, professor of biological sciences at Stanford's Hopkins Marine Station.

Palumbi and Stanford colleague Fiorenza Micheli, assistant professor of biological sciences at Hopkins, are two of 14 co-authors of the Science study, the first major analysis of all existing datasets—historical, experimental, fisheries and observational—on ocean species and ecosystems.

Based on current global trends, the authors predicted that every species of wild-caught seafood—from tuna to sardines—will collapse by the year 2050. "Collapse" was defined as a 90 percent depletion of the species' baseline abundance.

"Whether we looked at tidepools or studies over the entire world's ocean, we saw the same picture emerging," said lead author Boris Worm of Dalhousie University. "In losing species we lose the productivity and stability of entire ecosystems. I was shocked and disturbed by how consistent these trends are—beyond anything we suspected."

The impacts of species loss go beyond declines in seafood, the authors said, noting that human health risks also emerge as depleted coastal ecosystems become vulnerable to invasive species, disease outbreaks and noxious algal blooms.

"The ocean is a great recycler," Palumbi said. "It takes sewage and recycles it into nutrients, it scrubs toxins out of the water and it produces food and turns carbon dioxide into food and oxygen." But to provide these services, he added, the ocean needs all of its working parts—the millions of plant and animal species that inhabit the sea.

Accelerating declines

The research team analyzed 32 controlled experiments, observational studies from 48 marine protected areas and global catch data from the United Nations Food and Agriculture Organization's database of all fish and invertebrates worldwide from 1950 to 2003. The scientists also looked at a 1,000-year time series for 12 coastal regions, drawing on data from archives, fishery records, sediment cores and archeological sources.

"We see an accelerating decline in coastal species over the last 1,000 years, resulting in the loss of biological filter capacity, nursery habitats and healthy fisheries," said Dalhousie University co-author Heike Lotze, who led the historical analyses of Chesapeake Bay, San Francisco Bay, the Bay of Fundy and the North Sea, among other sites.

The results revealed that every species lost causes a faster unraveling of the overall ecosystem. This progressive biodiversity loss not only impairs the ability of the ocean to feed a growing human population but also sabotages the stability of marine environments, the authors said. Conversely, the study found that every species recovered adds significantly to the ecosystem's overall productivity and ability to withstand stresses.

According to the research team, species collapses are hastened by the decline in overall health of the ecosystem—fish rely on the clean water, prey populations and diverse habitats that are linked to higher diversity systems. This finding points to the need for marine resource managers to consider all species together rather than continuing with single-species management, the authors said.

Restoring populations

One pressing question for managers is whether losses can be reversed, the authors said. If species have not been pushed too far down, recovery can be fast, they found, adding that there is also a point of no return where recovery is unlikely, as in the case of the northern Atlantic cod.

Examination of protected areas worldwide showed that restoration of biodiversity greatly increased productivity and made ecosystems 21 percent less susceptible to environmental and human-caused fluctuations on average—an indication that ocean ecosystems have a strong capacity to rebound.

"The data show us it's not too late," Worm said. "We can turn this around. But less than 1 percent of the global ocean is effectively protected right now. We won't see complete recovery in one year, but in many cases species come back more quickly than people anticipated—in three to five to 10 years. And where this has been done we see immediate economic benefits."

The buffering impact of species diversity also generates long-term benefits that must be incorporated into future economic valuation and management decisions, the authors found. "Although there are short-term economic costs associated with preservation of marine biodiversity, over the long term biodiversity conservation and economic development are complementary goals," said co-author Ed Barbier, an economist at the University of Wyoming.

The authors concluded that restoring marine biodiversity through an ecosystem-based management approach—including integrated fisheries management, pollution control, maintenance of essential habitats and creation of marine reserves—is essential to avoid serious threats to global food security, coastal water quality and ecosystem stability.

"This isn't predicted to happen, this is happening now," said co-author Nicola Beaumont, an ecological economist with the Plymouth Marine Laboratory. "If biodiversity continues to decline, the marine environment will not be able to sustain our way of life. Indeed, it may not be able to sustain our lives at all."

Source: Stanford University

Explore further: Meeting to cover cleanup plan for former nuke missile site

Related Stories

Antarctic life – highly diverse, unusually structured

16 hours ago

The variety of plant and animal life in the Antarctic is much greater than previously thought, reveals an assessment of Antarctic biodiversity published by a team of scientists in the journal Nature this w ...

Silent extinctions on coral reefs

13 hours ago

There is a ray of hope in the face of dire predictions about the future of coral reefs, with the prospect that species can shift their distribution ranges to survive climate change.

Researchers reconstruct dinosaur tracks

Jun 23, 2015

Twelve years ago, footprints of carnivorous dinosaurs were discovered and excavated in a quarry near Goslar. Paleontologists from the University of Bonn, working with Dinosaur Park Münchehagen and the State ...

Recommended for you

China announces climate target for Paris deal

1 hour ago

China on Tuesday announced its contribution to a global climate pact that's supposed to be adopted this year in Paris, pledging to reduce the intensity of its carbon emissions and to halt their growth by 2030.

New study re-writes the rules of carbon analysis

4 hours ago

A new study published today in Nature Climate Change has found analyses of carbon emissions may be misleading as they failed to include the impacts of policies such as trading schemes, emission caps or quo ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.