Nanoparticles Improve Drug Targeting to Skin

November 27, 2006

Photodynamic therapy is a well-accepted treatment for a number of diseases of the skin, including several forms of skin cancer and actinic keratosis, a precancerous condition. However, the light-sensitizing agents used in photodynamic therapy leave a patient’s skin and eyes susceptible to damage from sunlight or even bright indoor light for six weeks or longer following treatment.

In an attempt to overcome this limitation, a research team headed by Antônio Machado, Ph.D., of the Universidade Federal de Uberlândia, in Brazil, has used polymer nanoparticles to encapsulate a light-sensitizing agent known as benzopsoralen.

Reporting its work in the International Journal of Pharmaceutics, the investigators used the biocompatible polymer poly(d,l-lactic-co-glycolic acid) (PLGA) to create the benzopsoralen-loaded nanoparticles. Thorough characterization of these nanoparticles showed them to be stable and that most of the benzopsoralen was trapped on the outer surface of the nanoparticle.

When the researchers added these nanoparticles to cells, they observed a burst of drug release occurring over three days. When irradiated with light following this burst, the cells suffered fatal damage resulting from the generation of reactive oxygen molecules. Microscopy studies showed that nanoparticles accumulated in the cells’ mitochondria and along the membrane that surrounds the nucleus. The researchers note that by accumulating in the mitochondria, these nanoparticles could increase the potency of benzopsoralen, which would reduce the dose needed to produce a cell-killing effect.

This work is detailed in a paper titled, “Evaluation of nanoparticles loaded with benzopsoralen in rat peritoneal exudate cells.” This work was published online in advance of print publication. An abstract is available through PubMed.

Source: National Cancer Institute

Related Stories

Recommended for you

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.